Incompressible inviscid limit for the full magnetohydrodynamic flows on expanding domains

In this paper we study the incompressible inviscid limit of the full magnetohydrodynamic flows on expanding domains with general initial data. By applying the relative energy method and carrying out detailed analysis on the oscillation part of the velocity, we prove rigorously that the gradient part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applications of Mathematics 2020-08, Vol.65 (4), p.483-509
1. Verfasser: Kwon, Young-Sam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the incompressible inviscid limit of the full magnetohydrodynamic flows on expanding domains with general initial data. By applying the relative energy method and carrying out detailed analysis on the oscillation part of the velocity, we prove rigorously that the gradient part of the weak solutions of the full magnetohydrodynamic flows converges to the strong solution of the incompressible Euler system in the whole space, as the Mach number, viscosity as well as the heat conductivity go to zero and the domains expand to the whole space. Furthermore, we obtain the convergence rate.
ISSN:0862-7940
1572-9109
DOI:10.21136/AM.2020.0342-18