Unramified affine Springer fibers and isospectral Hilbert schemes
For any connected reductive group G over C , we revisit Goresky–Kottwitz–MacPherson’s description of the torus equivariant Borel–Moore homology of affine Springer fibers Sp γ ⊂ Gr G , where γ = z t d and z is a regular semisimple element in the Lie algebra of G . In the case G = G L n , we relate th...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2020-09, Vol.26 (4), Article 61 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For any connected reductive group
G
over
C
, we revisit Goresky–Kottwitz–MacPherson’s description of the torus equivariant Borel–Moore homology of affine Springer fibers
Sp
γ
⊂
Gr
G
, where
γ
=
z
t
d
and
z
is a regular semisimple element in the Lie algebra of
G
. In the case
G
=
G
L
n
, we relate the equivariant cohomology of
Sp
γ
to Haiman’s work on the isospectral Hilbert scheme of points on the plane. We also explain the connection to the HOMFLY homology of (
n
,
dn
)-torus links, and formulate a conjecture describing the homology of the Hilbert scheme of points on the curve
{
x
n
=
y
dn
}
. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-020-00587-1 |