Unramified affine Springer fibers and isospectral Hilbert schemes

For any connected reductive group G over C , we revisit Goresky–Kottwitz–MacPherson’s description of the torus equivariant Borel–Moore homology of affine Springer fibers Sp γ ⊂ Gr G , where γ = z t d and z is a regular semisimple element in the Lie algebra of G . In the case G = G L n , we relate th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2020-09, Vol.26 (4), Article 61
1. Verfasser: Kivinen, Oscar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For any connected reductive group G over C , we revisit Goresky–Kottwitz–MacPherson’s description of the torus equivariant Borel–Moore homology of affine Springer fibers Sp γ ⊂ Gr G , where γ = z t d and z is a regular semisimple element in the Lie algebra of G . In the case G = G L n , we relate the equivariant cohomology of Sp γ to Haiman’s work on the isospectral Hilbert scheme of points on the plane. We also explain the connection to the HOMFLY homology of ( n ,  dn )-torus links, and formulate a conjecture describing the homology of the Hilbert scheme of points on the curve { x n = y dn } .
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-020-00587-1