A Note on Using Discretized Simulated Data to Estimate Implicit Likelihoods in Bayesian Analyses
This article presents a Bayesian inferential method where the likelihood for a model is unknown but where data can easily be simulated from the model. We discretize simulated (continuous) data to estimate the implicit likelihood in a Bayesian analysis employing a Markov chain Monte Carlo algorithm....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-08 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a Bayesian inferential method where the likelihood for a model is unknown but where data can easily be simulated from the model. We discretize simulated (continuous) data to estimate the implicit likelihood in a Bayesian analysis employing a Markov chain Monte Carlo algorithm. Three examples are presented as well as a small study on some of the method's properties. |
---|---|
ISSN: | 2331-8422 |