Accurate Attitude Determination Based on Adaptive UKF and RBF Neural Network Using Fusion Methodology for Micro-IMU Applied to Rotating Environment
Focusing on the issue of attitude tracking for low-cost and small-size Micro-Electro-Mechanical System (MEMS) Inertial Measurement Unit (IMU) in high dynamic environment, an Adaptive Unscented Kalman Filter (AUKF) method combining sensor fusion methodology with Artificial Neural Network (ANN) is pro...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-17 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Focusing on the issue of attitude tracking for low-cost and small-size Micro-Electro-Mechanical System (MEMS) Inertial Measurement Unit (IMU) in high dynamic environment, an Adaptive Unscented Kalman Filter (AUKF) method combining sensor fusion methodology with Artificial Neural Network (ANN) is proposed. The different control strategies are adopted by fusing multi-MEMS inertial sensors under various dynamic situations. The AUKF attitude determination approach utilizing the MEMS sensor and Global Positioning System (GPS) can provide reliable estimation in these situations. In particular, the adaptive scale factor is used to adaptively weaken or enhance the effects on new measurement data according to the predicted residual vector in the estimation process. In order to solve the problem that the new measurement data is not available in case of GPS fault, an attitude algorithm based on Radial Basis Function (RBF)-ANN feedback correction is proposed for AUKF. The estimated deviation of predicted system state can be provided based on RBF-ANN in GPS-denied environment. The corrected predicted system state is used for the estimation process in AUKF. An experimental platform was setup to simulate the rotation of the spinning projectile. The experimental results show that the proposed method has better performance in terms of attitude estimation than other representative methods under various dynamic situations. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2020/1638678 |