Restoration Methods of Respiratory Function for Spinal Cord Injury

Respiratory dysfunction caused by high spinal cord injury is fatal damage. Three treatment methods commonly used in the clinic, diaphragm pacing, mechanical ventilation, and respiratory muscle training, were chosen to explain the respiratory function reconstruction of spinal cord injury. The charact...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2020, Vol.2020 (2020), p.1-12
Hauptverfasser: Tong, Zhao-Hui, Wang, Na, Shi, Y., Ren, Shuai, Gu, X. Y., Cai, Maolin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Respiratory dysfunction caused by high spinal cord injury is fatal damage. Three treatment methods commonly used in the clinic, diaphragm pacing, mechanical ventilation, and respiratory muscle training, were chosen to explain the respiratory function reconstruction of spinal cord injury. The characteristics, research status, advantages, and disadvantages of these three treatment methods are reviewed. Diaphragm pacing technology has attracted much attention due to its price-friendly, efficient, and closer to physiological respiration. Therefore, the emphasis is on describing the characteristics of the stimulation waveform of diaphragm pacing and the mathematical correspondence between stimulation parameters (pulse interval, inspiratory time, etc.) and tidal volume. Meanwhile, it also briefly introduces that for patients with SCI with poor diaphragm pacing, intercostal muscle pacing can be used as the second option to restore respiratory function. Also, the development of electronic technology has promoted the emergence of closed-loop diaphragm pacing technology. Finally, we propose that the method of respiratory function reconstruction after spinal cord injury should pay more attention to physiology and the safety of surgery.
ISSN:1024-123X
1563-5147
DOI:10.1155/2020/7398789