The Haydys monopole equation
We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys insta...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2020-09, Vol.26 (4), Article 58 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Selecta mathematica (Basel, Switzerland) |
container_volume | 26 |
creator | Nagy, Ákos Oliveira, Gonçalo |
description | We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on
R
3
is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019). |
doi_str_mv | 10.1007/s00029-020-00584-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431607346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431607346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBRBDJWbD-XJx7BFV0CJVYimz5SQOtGrj1E6GfHsMQWJjuj_6vXe6x9itgAcBUDxGAEDNAYED5Io4nbGZoDTqtDtPPSByoZAu2VWM-4RLRJixu-2nW6ztWI9xcfSt7_zBLdxpsP3Ot9fsorGH6G5-65y9vzxvl2u-eVu9Lp82vMqE7jk2AJmmRtg8FYlFTVAVBOAIZdkAZVo1hDXmtZWlEmVhhRJSW6UV1FBkc3Y_-XbBnwYXe7P3Q2jTSYOUCZkQkonCiaqCjzG4xnRhd7RhNALMdwpmSsGkj81PCoaSKJtEMcHthwt_1v-ovgBQnVvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431607346</pqid></control><display><type>article</type><title>The Haydys monopole equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nagy, Ákos ; Oliveira, Gonçalo</creator><creatorcontrib>Nagy, Ákos ; Oliveira, Gonçalo</creatorcontrib><description>We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on
R
3
is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-020-00584-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bundles ; Bundling ; Gluing ; Instantons ; Linear algebra ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Monopoles ; Riemann surfaces ; Topological manifolds</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2020-09, Vol.26 (4), Article 58</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</citedby><cites>FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-020-00584-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-020-00584-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nagy, Ákos</creatorcontrib><creatorcontrib>Oliveira, Gonçalo</creatorcontrib><title>The Haydys monopole equation</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on
R
3
is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).</description><subject>Bundles</subject><subject>Bundling</subject><subject>Gluing</subject><subject>Instantons</subject><subject>Linear algebra</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monopoles</subject><subject>Riemann surfaces</subject><subject>Topological manifolds</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwBRBDJWbD-XJx7BFV0CJVYimz5SQOtGrj1E6GfHsMQWJjuj_6vXe6x9itgAcBUDxGAEDNAYED5Io4nbGZoDTqtDtPPSByoZAu2VWM-4RLRJixu-2nW6ztWI9xcfSt7_zBLdxpsP3Ot9fsorGH6G5-65y9vzxvl2u-eVu9Lp82vMqE7jk2AJmmRtg8FYlFTVAVBOAIZdkAZVo1hDXmtZWlEmVhhRJSW6UV1FBkc3Y_-XbBnwYXe7P3Q2jTSYOUCZkQkonCiaqCjzG4xnRhd7RhNALMdwpmSsGkj81PCoaSKJtEMcHthwt_1v-ovgBQnVvf</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nagy, Ákos</creator><creator>Oliveira, Gonçalo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>The Haydys monopole equation</title><author>Nagy, Ákos ; Oliveira, Gonçalo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bundles</topic><topic>Bundling</topic><topic>Gluing</topic><topic>Instantons</topic><topic>Linear algebra</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monopoles</topic><topic>Riemann surfaces</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Ákos</creatorcontrib><creatorcontrib>Oliveira, Gonçalo</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Ákos</au><au>Oliveira, Gonçalo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Haydys monopole equation</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>26</volume><issue>4</issue><artnum>58</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on
R
3
is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-020-00584-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1022-1824 |
ispartof | Selecta mathematica (Basel, Switzerland), 2020-09, Vol.26 (4), Article 58 |
issn | 1022-1824 1420-9020 |
language | eng |
recordid | cdi_proquest_journals_2431607346 |
source | SpringerLink Journals - AutoHoldings |
subjects | Bundles Bundling Gluing Instantons Linear algebra Manifolds (mathematics) Mathematics Mathematics and Statistics Monopoles Riemann surfaces Topological manifolds |
title | The Haydys monopole equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Haydys%20monopole%20equation&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Nagy,%20%C3%81kos&rft.date=2020-09-01&rft.volume=26&rft.issue=4&rft.artnum=58&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-020-00584-4&rft_dat=%3Cproquest_cross%3E2431607346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431607346&rft_id=info:pmid/&rfr_iscdi=true |