The Haydys monopole equation

We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys insta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2020-09, Vol.26 (4), Article 58
Hauptverfasser: Nagy, Ákos, Oliveira, Gonçalo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Selecta mathematica (Basel, Switzerland)
container_volume 26
creator Nagy, Ákos
Oliveira, Gonçalo
description We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on R 3 is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).
doi_str_mv 10.1007/s00029-020-00584-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2431607346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2431607346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBRBDJWbD-XJx7BFV0CJVYimz5SQOtGrj1E6GfHsMQWJjuj_6vXe6x9itgAcBUDxGAEDNAYED5Io4nbGZoDTqtDtPPSByoZAu2VWM-4RLRJixu-2nW6ztWI9xcfSt7_zBLdxpsP3Ot9fsorGH6G5-65y9vzxvl2u-eVu9Lp82vMqE7jk2AJmmRtg8FYlFTVAVBOAIZdkAZVo1hDXmtZWlEmVhhRJSW6UV1FBkc3Y_-XbBnwYXe7P3Q2jTSYOUCZkQkonCiaqCjzG4xnRhd7RhNALMdwpmSsGkj81PCoaSKJtEMcHthwt_1v-ovgBQnVvf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431607346</pqid></control><display><type>article</type><title>The Haydys monopole equation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Nagy, Ákos ; Oliveira, Gonçalo</creator><creatorcontrib>Nagy, Ákos ; Oliveira, Gonçalo</creatorcontrib><description>We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on R 3 is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-020-00584-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Bundles ; Bundling ; Gluing ; Instantons ; Linear algebra ; Manifolds (mathematics) ; Mathematics ; Mathematics and Statistics ; Monopoles ; Riemann surfaces ; Topological manifolds</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2020-09, Vol.26 (4), Article 58</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</citedby><cites>FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00029-020-00584-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00029-020-00584-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nagy, Ákos</creatorcontrib><creatorcontrib>Oliveira, Gonçalo</creatorcontrib><title>The Haydys monopole equation</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on R 3 is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).</description><subject>Bundles</subject><subject>Bundling</subject><subject>Gluing</subject><subject>Instantons</subject><subject>Linear algebra</subject><subject>Manifolds (mathematics)</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monopoles</subject><subject>Riemann surfaces</subject><subject>Topological manifolds</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwBRBDJWbD-XJx7BFV0CJVYimz5SQOtGrj1E6GfHsMQWJjuj_6vXe6x9itgAcBUDxGAEDNAYED5Io4nbGZoDTqtDtPPSByoZAu2VWM-4RLRJixu-2nW6ztWI9xcfSt7_zBLdxpsP3Ot9fsorGH6G5-65y9vzxvl2u-eVu9Lp82vMqE7jk2AJmmRtg8FYlFTVAVBOAIZdkAZVo1hDXmtZWlEmVhhRJSW6UV1FBkc3Y_-XbBnwYXe7P3Q2jTSYOUCZkQkonCiaqCjzG4xnRhd7RhNALMdwpmSsGkj81PCoaSKJtEMcHthwt_1v-ovgBQnVvf</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nagy, Ákos</creator><creator>Oliveira, Gonçalo</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>The Haydys monopole equation</title><author>Nagy, Ákos ; Oliveira, Gonçalo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-2f00394f1a5394627d40c7400e426bf04398f42d25da6b81b7a18169a8980d073</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bundles</topic><topic>Bundling</topic><topic>Gluing</topic><topic>Instantons</topic><topic>Linear algebra</topic><topic>Manifolds (mathematics)</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monopoles</topic><topic>Riemann surfaces</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagy, Ákos</creatorcontrib><creatorcontrib>Oliveira, Gonçalo</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagy, Ákos</au><au>Oliveira, Gonçalo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Haydys monopole equation</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>26</volume><issue>4</issue><artnum>58</artnum><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on R 3 is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-020-00584-4</doi></addata></record>
fulltext fulltext
identifier ISSN: 1022-1824
ispartof Selecta mathematica (Basel, Switzerland), 2020-09, Vol.26 (4), Article 58
issn 1022-1824
1420-9020
language eng
recordid cdi_proquest_journals_2431607346
source SpringerLink Journals - AutoHoldings
subjects Bundles
Bundling
Gluing
Instantons
Linear algebra
Manifolds (mathematics)
Mathematics
Mathematics and Statistics
Monopoles
Riemann surfaces
Topological manifolds
title The Haydys monopole equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A34%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Haydys%20monopole%20equation&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Nagy,%20%C3%81kos&rft.date=2020-09-01&rft.volume=26&rft.issue=4&rft.artnum=58&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-020-00584-4&rft_dat=%3Cproquest_cross%3E2431607346%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431607346&rft_id=info:pmid/&rfr_iscdi=true