The Haydys monopole equation

We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys insta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2020-09, Vol.26 (4), Article 58
Hauptverfasser: Nagy, Ákos, Oliveira, Gonçalo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study complexified Bogomolny monopoles using the complex linear extension of the Hodge star operator, these monopoles can be interpreted as solutions to the Bogomolny equation with a complex gauge group. Alternatively, these equations can be obtained from dimensional reduction of the Haydys instanton equations to three dimensions, thus we call them Haydys monopoles. We find that (under mild hypotheses) the smooth locus of the moduli space of finite energy Haydys monopoles on R 3 is a Kähler manifold containing the ordinary Bogomolny moduli space as a minimal Lagrangian submanifold—an A-brane. Moreover, using a gluing construction we construct an open neighborhood of this submanifold modeled on a neighborhood of the zero section in the tangent bundle to the Bogomolny moduli space. This is analogous to the case of Higgs bundles over a Riemann surface, where the (co)tangent bundle of holomorphic bundles canonically embeds into the Hitchin moduli space. These results contrast immensely with the case of finite energy Kapustin–Witten monopoles for which we have showed a vanishing theorem in Nagy and Oliveira (Kapustin–Witten equations on ALE and ALF Gravitational Instantons, 2019).
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-020-00584-4