Obstacles, Interfacial Forms, and Turbulence: A Numerical Analysis of Soil–Water Evaporation Across Different Interfaces
Exchange processes between a turbulent free flow and a porous media flow are sensitive to the flow dynamics in both flow regimes, as well as to the interface that separates them. Resolving these complex exchange processes across irregular interfaces is key in understanding many natural and engineere...
Gespeichert in:
Veröffentlicht in: | Transport in porous media 2020-09, Vol.134 (2), p.275-301 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exchange processes between a turbulent free flow and a porous media flow are sensitive to the flow dynamics in both flow regimes, as well as to the interface that separates them. Resolving these complex exchange processes across irregular interfaces is key in understanding many natural and engineered systems. With soil–water evaporation as the natural application of interest, the coupled behavior and exchange between flow regimes are investigated numerically, considering a turbulent free flow as well as interfacial forms and obstacles. Interfacial forms and obstacles will alter the flow conditions at the interface, creating flow structures that either enhance or reduce exchange rates based on their velocity conditions and their mixing with the main flow. To evaluate how these interfacial forms change the exchange rates, interfacial conditions are isolated and investigated numerically. First, different flow speeds are compared for a flat surface. Second, a porous obstacle of varied height is introduced at the interface, and the effects the flow structures that develop have on the interface are analyzed. The flow parameters of this obstacle are then varied and the interfacial exchange rates investigated. Next, to evaluate the interaction of flow structures between obstacles, a second obstacle is introduced, separated by a varied distance. Finally, the shape of these obstacles is modified to create different wave forms. Each of these interfacial forms and obstacles is shown to create different flow structures adjacent to the surface which alter the mass, momentum, and energy conditions at the interface. These changes will enhance the exchange rate in locations where higher velocity gradients and more mixing with the main flow develop, but will reduce the exchange rate in locations where low velocity gradients and limited mixing with the main flow occur. |
---|---|
ISSN: | 0169-3913 1573-1634 |
DOI: | 10.1007/s11242-020-01445-6 |