Production of Norway spruce embryos in a temporary immersion system (TIS)

Somatic embryogenesis has already been used for Norway spruce (Picea abies (L.) Karst) embling production on a laboratory scale, but automation is needed to increase efficiency and reduce costs. One option to scale up production is mass production in bioreactors. In a series of experiments, a pro-em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:In vitro cellular & developmental biology. Plant 2020-08, Vol.56 (4), p.430-439
Hauptverfasser: Välimäki, Sakari, Paavilainen, Laura, Tikkinen, Mikko, Salonen, Frida, Varis, Saila, Aronen, Tuija
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Somatic embryogenesis has already been used for Norway spruce (Picea abies (L.) Karst) embling production on a laboratory scale, but automation is needed to increase efficiency and reduce costs. One option to scale up production is mass production in bioreactors. In a series of experiments, a pro-embryogenic mass was propagated using Plantform temporary immersion system bioreactors, and the effect of different aeration cycles, support pad materials, and post-maturation treatments (rinsing and desiccation) on the embryo yield and embling survival after 4 to 6 mo in a greenhouse was tested. Three genotypes were used to test each treatment. The best aeration frequency was 20 min every 4 h, while a lower or higher frequency did not generally improve embryo production. Filter paper on plastic netting was the best support pad material in terms of usability and embryo production (varying from 177 ± 20 to 696 ± 109 per g pro-embryogenic mass). The separation of the embryos from the undeveloped cell mass by rinsing with sterile water resulted in reduced survival of the emblings. Desiccation treatment on nested plates with the embryos on the inner plate with or without filter paper improved their survival. Bioreactors were laborious to prepare, load, and clean. Improvements in embryo production can be achieved by optimizing the process, but bioreactors based on the requirements of somatic embryogenesis are needed to enable their use in the mass production of Norway spruce emblings.
ISSN:1054-5476
1475-2689
DOI:10.1007/s11627-020-10068-x