Number on the Forehead Protocols yielding dense Ruzsa–Szemerédi graphs and hypergraphs
We describe algorithmic Number On the Forehead protocols that provide dense Ruzsa–Szemerédi graphs. One protocol leads to a simple and natural extension of the original construction of Ruzsa and Szemerédi. The graphs induced by this protocol have n vertices, Ω ( n 2 / log n ) edges, and are decompos...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2020-08, Vol.161 (2), p.488-506 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe algorithmic Number On the Forehead protocols that provide dense Ruzsa–Szemerédi graphs. One protocol leads to a simple and natural extension of the original construction of Ruzsa and Szemerédi. The graphs induced by this protocol have
n
vertices,
Ω
(
n
2
/
log
n
)
edges, and are decomposable into
n
1
+
O
(
1
/
log
log
n
)
induced matchings. Another protocol is a somewhat simpler version of the construction of [1], producing graphs with similar properties. We also generalize the above protocols to more than three players, in order to construct dense uniform hypergraphs in which every edge lies in a positive small number of simplices, extending a result of Fox and Loh. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-020-01069-8 |