Number on the Forehead Protocols yielding dense Ruzsa–Szemerédi graphs and hypergraphs

We describe algorithmic Number On the Forehead protocols that provide dense Ruzsa–Szemerédi graphs. One protocol leads to a simple and natural extension of the original construction of Ruzsa and Szemerédi. The graphs induced by this protocol have n vertices, Ω ( n 2 / log n ) edges, and are decompos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2020-08, Vol.161 (2), p.488-506
Hauptverfasser: Alon, N., Shraibman, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe algorithmic Number On the Forehead protocols that provide dense Ruzsa–Szemerédi graphs. One protocol leads to a simple and natural extension of the original construction of Ruzsa and Szemerédi. The graphs induced by this protocol have n vertices, Ω ( n 2 / log n ) edges, and are decomposable into n 1 + O ( 1 / log log n ) induced matchings. Another protocol is a somewhat simpler version of the construction of [1], producing graphs with similar properties. We also generalize the above protocols to more than three players, in order to construct dense uniform hypergraphs in which every edge lies in a positive small number of simplices, extending a result of Fox and Loh.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-020-01069-8