Data-driven model-free sliding mode learning control for a class of discrete-time nonlinear systems
This paper proposes a data-driven model-free sliding mode learning control (MFSMLC) for a class of discrete-time nonlinear systems. In this scheme, the control design does not depend on the mathematical model of the controlled system. The nonlinear system can be transformed into a dynamic linear dat...
Gespeichert in:
Veröffentlicht in: | Transactions of the Institute of Measurement and Control 2020-09, Vol.42 (13), p.2533-2547 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a data-driven model-free sliding mode learning control (MFSMLC) for a class of discrete-time nonlinear systems. In this scheme, the control design does not depend on the mathematical model of the controlled system. The nonlinear system can be transformed into a dynamic linear data system by a novel dynamic linearization method. A recursive learning control algorithm is designed for the nonlinear system that can drive the sliding variable reach and remain on the sliding surface only by using output and input data. Moreover, the chattering is reduced because there is no non-smooth term in MFSMLC. After the strict stability analysis, the effectiveness of MFSMLC is validated by MATLAB simulations. |
---|---|
ISSN: | 0142-3312 1477-0369 |
DOI: | 10.1177/0142331220921022 |