Group Analysis of the One-Dimensional Gas Dynamics Equations in Lagrangian Coordinates and Conservation Laws
A group analysis of the second-order equation including the one-dimensional gas dynamics equations in Lagrangian coordinates as a particular case is performed. The use of Lagrangian coordinates makes it possible to consider the one-dimensional gas dynamics equations as a variational Euler-Lagrange e...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics and technical physics 2020-03, Vol.61 (2), p.189-206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A group analysis of the second-order equation including the one-dimensional gas dynamics equations in Lagrangian coordinates as a particular case is performed. The use of Lagrangian coordinates makes it possible to consider the one-dimensional gas dynamics equations as a variational Euler-Lagrange equation with an appropriate Lagrangian. Conservation laws are derived with the use of the variational presentation and Noether’s theorem. A complete group classification of the Euler-Lagrange equation is obtained; as a result, 18 different classes can be identified. |
---|---|
ISSN: | 0021-8944 1573-8620 |
DOI: | 10.1134/S0021894420020054 |