Ordered and Convex Geometric Trees with Linear Extremal Function
The extremal functions ex → ( n , F ) and ex ↻ ( n , F ) for ordered and convex geometric acyclic graphs F have been extensively investigated by a number of researchers. Basic questions are to determine when ex → ( n , F ) and ex ↻ ( n , F ) are linear in n , the latter posed by Brass–Károlyi–Valtr...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2020-09, Vol.64 (2), p.324-338 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extremal functions
ex
→
(
n
,
F
)
and
ex
↻
(
n
,
F
)
for ordered and convex geometric acyclic graphs
F
have been extensively investigated by a number of researchers. Basic questions are to determine when
ex
→
(
n
,
F
)
and
ex
↻
(
n
,
F
)
are linear in
n
, the latter posed by Brass–Károlyi–Valtr in 2003. In this paper, we answer both these questions for every tree
F
. We give a forbidden subgraph characterization for a family
T
of ordered trees with
k
edges, and show that
ex
→
(
n
,
T
)
=
(
k
-
1
)
n
-
k
2
for all
n
≥
k
+
1
when
T
∈
T
and
ex
→
(
n
,
T
)
=
Ω
(
n
log
n
)
for
T
∉
T
. We also describe the family
T
′
of the convex geometric trees with linear Turán number and show that for every convex geometric tree
F
∉
T
′
,
ex
↻
(
n
,
F
)
=
Ω
(
n
log
log
n
)
. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-019-00149-z |