Numerical study on heat transfer between airflow and surrounding rock with two major ventilation models in deep coal mine

Not only is the thermal environment of the coal mining face related to the temperature of the surrounding rock, it is also closely associated with the ventilation model of the working face. In this study, the numerical methods were applied to study the impact of two major ventilation systems on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2020-08, Vol.13 (16), Article 756
Hauptverfasser: Guo, Pingye, Su, Yi, Pang, Dongyang, Wang, Yanwei, Guo, Zhibiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Not only is the thermal environment of the coal mining face related to the temperature of the surrounding rock, it is also closely associated with the ventilation model of the working face. In this study, the numerical methods were applied to study the impact of two major ventilation systems on the airflow temperature of working face in coalmine. Firstly, a heat transfer model of the surrounding rock and airflow was established to reveal that the wall roughness of the surrounding rock could enhance heat transfer between the surrounding rock and the airflow. Moreover, an analysis was conducted of the heat transfer between the airflow and the surrounding rock under different modes of ventilation in the first mining face. According to the analytical results, the temperature of airflow in the U-type ventilation system is lower than in the Y-type ventilation system. For the next adjacent coal mining face, however, the Y-type ventilation system is more conducive in reducing the temperature of the airflow. Therefore, with regard to the mine as a whole, the Y-type ventilation system is more effective than a U-type system in reducing heat and humidity in the ambient environment.
ISSN:1866-7511
1866-7538
DOI:10.1007/s12517-020-05725-9