Design of electrical conductive poly(lactic acid)/carbon black composites by induced particle aggregation
The electrical conductivity of ternary composites composed of a biopolymer blend with conductive particles (carbon black [CB]) is induced by the control of particle dispersion in the dispersed phase. If the CB particles have higher chemical affinity for the secondary phase (poly(caprolactone) [PCL]]...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2020-11, Vol.137 (42), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The electrical conductivity of ternary composites composed of a biopolymer blend with conductive particles (carbon black [CB]) is induced by the control of particle dispersion in the dispersed phase. If the CB particles have higher chemical affinity for the secondary phase (poly(caprolactone) [PCL]]) than the matrix (poly(lactic acid) [PLA]), especially as the concentration of the PCL phase decreases significantly to 4 wt%, the PCL phase induces the aggregation of CB particles beyond the selective localization, resulting in a shift of the particle percolation threshold to a lower concentration of particles (2.44 wt% CB). Moreover, the mixing ratio between the CB and the PCL phase significantly affects the formation of percolation of particles. When the mixing ratio of CB to PCL is equivalent (1:1), the ternary composite shows high electrical DC conductivity above 1 S/m with 10 wt% CB. The addition of a small amount of PCL induces the formation of particle aggregates with a high aspect ratio, providing more electron transfer pathways due to the multiple points of contact between the particle aggregates (power law scaling exponent of the composites ~2.14). Meanwhile, a binary composite (PLA/CB) never reaches high electrical conductivity of 1 S/m and even requires a greater concentration of CB (13 wt% CB for 10−3 S/m) to accomplish electron transfer because of the small aspect ratio of randomly dispersed particle aggregates (power law scaling exponent ~3.20). |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.49295 |