An exact bidirectional pulse algorithm for the constrained shortest path

A constrained shortest path is a minimum‐cost sequence of arcs on a directed network that satisfies knapsack‐type constraints on the resource consumption over the arcs. We propose an exact method based on a recursive depth‐first search procedure known as the pulse algorithm (PA). One of the key cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2020-09, Vol.76 (2), p.128-146
Hauptverfasser: Cabrera, Nicolás, Medaglia, Andrés L., Lozano, Leonardo, Duque, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A constrained shortest path is a minimum‐cost sequence of arcs on a directed network that satisfies knapsack‐type constraints on the resource consumption over the arcs. We propose an exact method based on a recursive depth‐first search procedure known as the pulse algorithm (PA). One of the key contributions of the proposal lies in a bidirectional search strategy leveraged on parallelism. In addition, we developed a pulse‐based heuristic that quickly finds near‐optimal solutions and shows great potential for column generation (CG) schemes. We present computational experiments over large real‐road networks with up to 6 million nodes and 15 million arcs. We illustrate the use of the bidirectional PA in a CG scheme to solve a multi‐activity shift scheduling problem, where the pricing problem is modeled as a constrained‐shortest path with multiple resource constraints.
ISSN:0028-3045
1097-0037
DOI:10.1002/net.21960