Ion-scale Current Structures in Short Large-amplitude Magnetic Structures

We investigate electric current structures in Short Large-Amplitude Magnetic Structures (SLAMS) in the terrestrial ion foreshock region observed by the Magnetospheric Multiscale mission. The structures with intense currents ( ) have scale lengths comparable to the local ion inertial length (di). One...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-08, Vol.898 (2), p.121, Article 121
Hauptverfasser: Wang, Shan, Chen, Li-Jen, Bessho, Naoki, Hesse, Michael, Wilson, Lynn B., Denton, Richard, Ng, Jonathan, Giles, Barbara, Torbert, Roy, Burch, James
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate electric current structures in Short Large-Amplitude Magnetic Structures (SLAMS) in the terrestrial ion foreshock region observed by the Magnetospheric Multiscale mission. The structures with intense currents ( ) have scale lengths comparable to the local ion inertial length (di). One current structure type is a current sheet due to the magnetic field rotation of the SLAMS, and a subset of these current sheets can exhibit reconnection features including the electron outflow jet and X-line-type magnetic topology. The di-scale current sheet near the edge of a SLAMS propagates much more slowly than the overall SLAMS, suggesting that it may result from compression. The current structures also exist as magnetosonic whistler waves with fci < f < flh, where fci and flh are the ion cyclotron frequency and the lower-hybrid frequency, respectively. The field rotations in the current sheets and whistler waves generate comparable and energy conversion rates. Electron heating is clearly observed in one whistler packet embedded in a larger-scale current sheet of the SLAMS, where the parallel electric field and the curvature drift opposite to the electric field energize electrons. The results give insight about the thin current structure generation and energy conversion at thin current structures in the shock transition region.
ISSN:0004-637X
1538-4357
1538-4357
DOI:10.3847/1538-4357/ab9b8b