Algorithmic approach to diagrammatic expansions for real-frequency evaluation of susceptibility functions

We systematically generate the perturbative expansion for the two-particle spin susceptibility in the Feynman diagrammatic formalism and apply this expansion to a model system-the single-band Hubbard model on a square lattice. We make use of algorithmic Matsubara integration (AMI) [A. Taheridehkordi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-07, Vol.102 (4), p.1, Article 045115
Hauptverfasser: Taheridehkordi, Amir, Curnoe, S. H., LeBlanc, J. P. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We systematically generate the perturbative expansion for the two-particle spin susceptibility in the Feynman diagrammatic formalism and apply this expansion to a model system-the single-band Hubbard model on a square lattice. We make use of algorithmic Matsubara integration (AMI) [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys. Rev. B 99, 035120 (2019)] to analytically evaluate Matsubara frequency summations, allowing us to symbolically impose analytic continuation to the real-frequency axis. We minimize our computational expense by applying graph invariant transformations [A. Taheridehkordi, S. H. Curnoe, and J. P. F. LeBlanc, Phys. Rev. B 101, 125109 (2020)]. We highlight extensions of the random-phase approximation and T-matrix methods that, due to AMI, become tractable. We present results for weak interaction strength where the direct perturbative expansion is convergent, and verify our results on the Matsubara axis by comparison to other numerical methods. By examining the spin susceptibility as a function of real frequency via an order-by-order expansion, we can identify precisely what role higher-order corrections play on spin susceptibility and demonstrate the utility and limitations of our approach.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.045115