Shattering-extremal set systems from Sperner families
We say that a set system F⊆2[n] shatters a given set S⊆[n] if 2S={F∩S:F∈F}. The Sauer–Shelah lemma states that in general, a set system F shatters at least |F| sets. We concentrate on the case of equality and call a set system shattering-extremal if it shatters exactly |F| sets. Here we discuss an a...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2020-04, Vol.276, p.92-101 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!