Shattering-extremal set systems from Sperner families

We say that a set system F⊆2[n] shatters a given set S⊆[n] if 2S={F∩S:F∈F}. The Sauer–Shelah lemma states that in general, a set system F shatters at least |F| sets. We concentrate on the case of equality and call a set system shattering-extremal if it shatters exactly |F| sets. Here we discuss an a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2020-04, Vol.276, p.92-101
Hauptverfasser: Kusch, Christopher, Mészáros, Tamás
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a set system F⊆2[n] shatters a given set S⊆[n] if 2S={F∩S:F∈F}. The Sauer–Shelah lemma states that in general, a set system F shatters at least |F| sets. We concentrate on the case of equality and call a set system shattering-extremal if it shatters exactly |F| sets. Here we discuss an approach to study these systems using Sperner families and prove some preliminary results based on an earlier algebraic approach.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2019.07.016