A new proof of the Larman–Rogers upper bound for the chromatic number of the Euclidean space
The chromatic numberχ(Rn) of the Euclidean space Rn is the smallest number of colors sufficient for coloring all points of the space in such a way that any two points at the distance 1 have different colors. In 1972 Larman–Rogers proved that χ(Rn)⩽(3+o(1))n. We give a new proof of this bound.
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2020-04, Vol.276, p.115-120 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The chromatic numberχ(Rn) of the Euclidean space Rn is the smallest number of colors sufficient for coloring all points of the space in such a way that any two points at the distance 1 have different colors. In 1972 Larman–Rogers proved that χ(Rn)⩽(3+o(1))n. We give a new proof of this bound. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2019.05.020 |