Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties
Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020-09, Vol.51 (9), p.4662-4673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4673 |
---|---|
container_issue | 9 |
container_start_page | 4662 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 51 |
creator | Zhou, Wenjian Zhu, Jian Zhang, Zhihao |
description | Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180 minutes, the average austenite grain of La-microalloyed H13 steel increases by 35.7 pct, while that of La-free H13 steel increases by 66.7 pct. With the extension of austenitizing time, the decrease in the strength and the plasticity of tempered La-microalloyed H13 steel is considerably less than those of tempered La-free H13 steel. Austenitized at 1050 °C for 180 minutes, the tensile strength and the elongation to failure of the tempered La-microalloyed steel are 1895 MPa and 9.3 pct, respectively. The addition of La increases the amount of undissolved carbide V
8
C
7
and refines the carbide, and La
2
O
2
S particles with high melting point are detected. Because of the combined effect of these fine dispersed second-phase particles, the pinning effect on grain boundary migration increases, and the grain growth is restrained. Some martensitic substructures transform from twin configuration to dislocation configuration because of La addition, and the lath bundles of martensite are refined. As a result, the strength and the toughness of the steel are improved. |
doi_str_mv | 10.1007/s11661-020-05872-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429923484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2429923484</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-46caccd906a920d43d2aa2dd05e1b0086014e3e0ecdd020018a6c8634275bc553</originalsourceid><addsrcrecordid>eNp9UE1LAzEQXUTBWv0DngKeo5OPze4ea6ltoUVBPYc0O2u3rJuapEr_vakVvHmZGYb3wXtZds3glgEUd4ExpRgFDhTysuBUnmQDlktBWSXhNN1QCJorLs6zixA2AMAqoQYZjnYhYt9GJFNv2j5N9xXX5B7X5rN1PhDXkIWhy9Z6Z7rO7bEmMybIc0TsiOlrMo-BTJoGbSSuJ0u0a9O31nTkybst-thiuMzOGtMFvPrdw-z1YfIyntHF43Q-Hi2oFWUeqVTWWFtXoEzFoZai5sbwuoYc2QqgVMAkCgS06cdThNIoWyoheZGvbJ6LYXZz1N1697HDEPXG7XyfLDWXvKq4kKVMKH5EpUgheGz01rfvxu81A32oUx_r1MlD_9SpDyRxJIUE7t_Q_0n_w_oGnQp3CA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429923484</pqid></control><display><type>article</type><title>Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhou, Wenjian ; Zhu, Jian ; Zhang, Zhihao</creator><creatorcontrib>Zhou, Wenjian ; Zhu, Jian ; Zhang, Zhihao</creatorcontrib><description>Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180 minutes, the average austenite grain of La-microalloyed H13 steel increases by 35.7 pct, while that of La-free H13 steel increases by 66.7 pct. With the extension of austenitizing time, the decrease in the strength and the plasticity of tempered La-microalloyed H13 steel is considerably less than those of tempered La-free H13 steel. Austenitized at 1050 °C for 180 minutes, the tensile strength and the elongation to failure of the tempered La-microalloyed steel are 1895 MPa and 9.3 pct, respectively. The addition of La increases the amount of undissolved carbide V
8
C
7
and refines the carbide, and La
2
O
2
S particles with high melting point are detected. Because of the combined effect of these fine dispersed second-phase particles, the pinning effect on grain boundary migration increases, and the grain growth is restrained. Some martensitic substructures transform from twin configuration to dislocation configuration because of La addition, and the lath bundles of martensite are refined. As a result, the strength and the toughness of the steel are improved.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-020-05872-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Austenite ; Carbides ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium molybdenum vanadium steels ; Configurations ; Elongation ; Grain boundary migration ; Grain growth ; Grain size ; Grain size distribution ; High strength low alloy steels ; Hot work tool steels ; Martensite ; Materials Science ; Mechanical properties ; Melting points ; Metallic Materials ; Microalloying ; Nanotechnology ; Particle size distribution ; Steel ; Structural Materials ; Substructures ; Surfaces and Interfaces ; Tensile strength ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-09, Vol.51 (9), p.4662-4673</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2020</rights><rights>The Minerals, Metals & Materials Society and ASM International 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-46caccd906a920d43d2aa2dd05e1b0086014e3e0ecdd020018a6c8634275bc553</citedby><cites>FETCH-LOGICAL-c385t-46caccd906a920d43d2aa2dd05e1b0086014e3e0ecdd020018a6c8634275bc553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-020-05872-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-020-05872-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Zhou, Wenjian</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Zhang, Zhihao</creatorcontrib><title>Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180 minutes, the average austenite grain of La-microalloyed H13 steel increases by 35.7 pct, while that of La-free H13 steel increases by 66.7 pct. With the extension of austenitizing time, the decrease in the strength and the plasticity of tempered La-microalloyed H13 steel is considerably less than those of tempered La-free H13 steel. Austenitized at 1050 °C for 180 minutes, the tensile strength and the elongation to failure of the tempered La-microalloyed steel are 1895 MPa and 9.3 pct, respectively. The addition of La increases the amount of undissolved carbide V
8
C
7
and refines the carbide, and La
2
O
2
S particles with high melting point are detected. Because of the combined effect of these fine dispersed second-phase particles, the pinning effect on grain boundary migration increases, and the grain growth is restrained. Some martensitic substructures transform from twin configuration to dislocation configuration because of La addition, and the lath bundles of martensite are refined. As a result, the strength and the toughness of the steel are improved.</description><subject>Austenite</subject><subject>Carbides</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium molybdenum vanadium steels</subject><subject>Configurations</subject><subject>Elongation</subject><subject>Grain boundary migration</subject><subject>Grain growth</subject><subject>Grain size</subject><subject>Grain size distribution</subject><subject>High strength low alloy steels</subject><subject>Hot work tool steels</subject><subject>Martensite</subject><subject>Materials Science</subject><subject>Mechanical properties</subject><subject>Melting points</subject><subject>Metallic Materials</subject><subject>Microalloying</subject><subject>Nanotechnology</subject><subject>Particle size distribution</subject><subject>Steel</subject><subject>Structural Materials</subject><subject>Substructures</subject><subject>Surfaces and Interfaces</subject><subject>Tensile strength</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9UE1LAzEQXUTBWv0DngKeo5OPze4ea6ltoUVBPYc0O2u3rJuapEr_vakVvHmZGYb3wXtZds3glgEUd4ExpRgFDhTysuBUnmQDlktBWSXhNN1QCJorLs6zixA2AMAqoQYZjnYhYt9GJFNv2j5N9xXX5B7X5rN1PhDXkIWhy9Z6Z7rO7bEmMybIc0TsiOlrMo-BTJoGbSSuJ0u0a9O31nTkybst-thiuMzOGtMFvPrdw-z1YfIyntHF43Q-Hi2oFWUeqVTWWFtXoEzFoZai5sbwuoYc2QqgVMAkCgS06cdThNIoWyoheZGvbJ6LYXZz1N1697HDEPXG7XyfLDWXvKq4kKVMKH5EpUgheGz01rfvxu81A32oUx_r1MlD_9SpDyRxJIUE7t_Q_0n_w_oGnQp3CA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Zhou, Wenjian</creator><creator>Zhu, Jian</creator><creator>Zhang, Zhihao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20200901</creationdate><title>Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties</title><author>Zhou, Wenjian ; Zhu, Jian ; Zhang, Zhihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-46caccd906a920d43d2aa2dd05e1b0086014e3e0ecdd020018a6c8634275bc553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Austenite</topic><topic>Carbides</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium molybdenum vanadium steels</topic><topic>Configurations</topic><topic>Elongation</topic><topic>Grain boundary migration</topic><topic>Grain growth</topic><topic>Grain size</topic><topic>Grain size distribution</topic><topic>High strength low alloy steels</topic><topic>Hot work tool steels</topic><topic>Martensite</topic><topic>Materials Science</topic><topic>Mechanical properties</topic><topic>Melting points</topic><topic>Metallic Materials</topic><topic>Microalloying</topic><topic>Nanotechnology</topic><topic>Particle size distribution</topic><topic>Steel</topic><topic>Structural Materials</topic><topic>Substructures</topic><topic>Surfaces and Interfaces</topic><topic>Tensile strength</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Wenjian</creatorcontrib><creatorcontrib>Zhu, Jian</creatorcontrib><creatorcontrib>Zhang, Zhihao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Wenjian</au><au>Zhu, Jian</au><au>Zhang, Zhihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2020-09-01</date><risdate>2020</risdate><volume>51</volume><issue>9</issue><spage>4662</spage><epage>4673</epage><pages>4662-4673</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180 minutes, the average austenite grain of La-microalloyed H13 steel increases by 35.7 pct, while that of La-free H13 steel increases by 66.7 pct. With the extension of austenitizing time, the decrease in the strength and the plasticity of tempered La-microalloyed H13 steel is considerably less than those of tempered La-free H13 steel. Austenitized at 1050 °C for 180 minutes, the tensile strength and the elongation to failure of the tempered La-microalloyed steel are 1895 MPa and 9.3 pct, respectively. The addition of La increases the amount of undissolved carbide V
8
C
7
and refines the carbide, and La
2
O
2
S particles with high melting point are detected. Because of the combined effect of these fine dispersed second-phase particles, the pinning effect on grain boundary migration increases, and the grain growth is restrained. Some martensitic substructures transform from twin configuration to dislocation configuration because of La addition, and the lath bundles of martensite are refined. As a result, the strength and the toughness of the steel are improved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-020-05872-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2020-09, Vol.51 (9), p.4662-4673 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2429923484 |
source | SpringerLink Journals - AutoHoldings |
subjects | Austenite Carbides Characterization and Evaluation of Materials Chemistry and Materials Science Chromium molybdenum vanadium steels Configurations Elongation Grain boundary migration Grain growth Grain size Grain size distribution High strength low alloy steels Hot work tool steels Martensite Materials Science Mechanical properties Melting points Metallic Materials Microalloying Nanotechnology Particle size distribution Steel Structural Materials Substructures Surfaces and Interfaces Tensile strength Thin Films |
title | Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T11%3A09%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Austenite%20Grain%20Growth%20Behaviors%20of%20La-Microalloyed%20H13%20Steel%20and%20Its%20Effect%20on%20Mechanical%20Properties&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Zhou,%20Wenjian&rft.date=2020-09-01&rft.volume=51&rft.issue=9&rft.spage=4662&rft.epage=4673&rft.pages=4662-4673&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-020-05872-4&rft_dat=%3Cproquest_cross%3E2429923484%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429923484&rft_id=info:pmid/&rfr_iscdi=true |