Austenite Grain Growth Behaviors of La-Microalloyed H13 Steel and Its Effect on Mechanical Properties

Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2020-09, Vol.51 (9), p.4662-4673
Hauptverfasser: Zhou, Wenjian, Zhu, Jian, Zhang, Zhihao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling austenite grain size is an effective method to improve mechanical properties of alloy steels. This article shows that La addition can effectively restrain the growth of austenite grains in H13 steel and make the grain size distribution more uniform. When holding at 1050 °C from 10 to 180 minutes, the average austenite grain of La-microalloyed H13 steel increases by 35.7 pct, while that of La-free H13 steel increases by 66.7 pct. With the extension of austenitizing time, the decrease in the strength and the plasticity of tempered La-microalloyed H13 steel is considerably less than those of tempered La-free H13 steel. Austenitized at 1050 °C for 180 minutes, the tensile strength and the elongation to failure of the tempered La-microalloyed steel are 1895 MPa and 9.3 pct, respectively. The addition of La increases the amount of undissolved carbide V 8 C 7 and refines the carbide, and La 2 O 2 S particles with high melting point are detected. Because of the combined effect of these fine dispersed second-phase particles, the pinning effect on grain boundary migration increases, and the grain growth is restrained. Some martensitic substructures transform from twin configuration to dislocation configuration because of La addition, and the lath bundles of martensite are refined. As a result, the strength and the toughness of the steel are improved.
ISSN:1073-5623
1543-1940
DOI:10.1007/s11661-020-05872-4