On the Monitoring of the Vibratory Environment of DCMIX4 Campaign. Preliminary Results

This work presents the preliminary characterization of the vibrational environment of the DCMIX4 thermodiffusion experiment conducted onboard the ISS from December 2018 to March 2019. Given the long duration of each one of the 58 runs of the campaign and to ensure a correct interpretation of the res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microgravity science and technology 2020-08, Vol.32 (4), p.615-628
Hauptverfasser: Dubert, D., Marín-Genescà, M., Simón, M. J., Ezquerro, J.M., Massons, J., Gavaldà, Jna, Ruiz, X., Shevtsova, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work presents the preliminary characterization of the vibrational environment of the DCMIX4 thermodiffusion experiment conducted onboard the ISS from December 2018 to March 2019. Given the long duration of each one of the 58 runs of the campaign and to ensure a correct interpretation of the results, an accurate analysis of acceleration levels all along the experiment is advisable. Digital signals coming from the nearest sensor, es09006, located in the Microgravity Science Glovebox (Destiny module) were downloaded from the PIMS NASA website. The techniques used to identify the main disturbances during the experiments were defined both in time and frequency domains. It is expected that the results obtained can help the experimentalist to have an overview of the possible sources of disturbances that may affect their experiments. To visualize the possible impact of the accelerometric environment on the experiment a numerical simulation has been performed. Four signals have been chosen, one considering the ideal case g = 0, one coming from the OSS raw sensor (outside the Microgravity Science Glovebox) and the other two, coming from the es09006 sensor that needed to be mathematical manipulated for considering only the low frequency range. Independent of the location of the sensor, numerical simulations do not detect, in any case, appreciable flow disturbances if quiescent periods are considered. Therefore, in case the reference sensor is not available one can use other sensors placed in the same module.
ISSN:0938-0108
1875-0494
DOI:10.1007/s12217-020-09797-w