A numerical evaluation of prediction accuracy of CO2 absorber model for various reaction rate coefficients

The performance of the CO2 absorber column using mono-ethanolamine (MEA) solution as chemical solvent are predicted by a One-Dimensional (1-D) rate based model in the present study. 1-D Mass and heat balance equations of vapor and liquid phase are coupled with interfacial mass transfer model and vap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2012, Vol.16 (3), p.877-888
Hauptverfasser: Shim, S.M., Lee, S.J., Kim, W.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of the CO2 absorber column using mono-ethanolamine (MEA) solution as chemical solvent are predicted by a One-Dimensional (1-D) rate based model in the present study. 1-D Mass and heat balance equations of vapor and liquid phase are coupled with interfacial mass transfer model and vapor-liquid equilibrium model. The two-film theory is used to estimate the mass transfer between the vapor and liquid film. Chemical reactions in MEA-CO2-H2O system are considered to predict the equilibrium pressure of CO2 in the MEA solution. The mathematical and reaction kinetics models used in this work are calculated by using in-house code. The numerical results are validated in the comparison of simulation results with experimental and simulation data given in the literature. The performance of CO2 absorber column is evaluated by the 1-D rate based model using various reaction rate coefficients suggested by various researchers. When the rate of liquid to gas mass flow rate is about 8.3, 6.6, 4.5 and 3.1, the error of CO2 loading and the CO2 removal efficiency using the reaction rate coefficients of Aboudheir et al. is within about 4.9 % and 5.2 %, respectively. Therefore, the reaction rate coefficient suggested by Aboudheir et al. among the various reaction rate coefficients used in this study is appropriate to predict the performance of CO2 absorber column using MEA solution. [Acknowledgement. This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (2011-0017220)]. nema
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI120202126S