Decompositions of dependence for high-dimensional extremes
We propose two decompositions that help to summarize and describe high-dimensional tail dependence within the framework of regular variation. We use a transformation to define a vector space on the positive orthant and show that transformed-linear operations applied to regularly-varying random vecto...
Gespeichert in:
Veröffentlicht in: | Biometrika 2019-09, Vol.106 (3), p.587-604 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose two decompositions that help to summarize and describe high-dimensional tail dependence within the framework of regular variation. We use a transformation to define a vector space on the positive orthant and show that transformed-linear operations applied to regularly-varying random vectors preserve regular variation. We summarize tail dependence via a matrix of pairwise tail dependence metrics that is positive semidefinite; eigendecomposition allows one to interpret tail dependence in terms of the resulting eigenbasis. This matrix is completely positive, and one can easily construct regularly-varying random vectors that share the same pairwise tail dependencies. We illustrate our methods with Swiss rainfall and financial returns data. |
---|---|
ISSN: | 0006-3444 1464-3510 |
DOI: | 10.1093/biomet/asz028 |