Dynamics and eigenvalues in dimension zero

Let $X$ be a compact, metric and totally disconnected space and let $f:X\rightarrow X$ be a continuous map. We relate the eigenvalues of $f_{\ast }:\check{H}_{0}(X;\mathbb{C})\rightarrow \check{H}_{0}(X;\mathbb{C})$ to dynamical properties of $f$, roughly showing that if the dynamics is complicated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2020-09, Vol.40 (9), p.2434-2452
Hauptverfasser: HERNÁNDEZ-CORBATO, LUIS, NIEVES-RIVERA, DAVID JESÚS, RUIZ DEL PORTAL, FRANCISCO R., SÁNCHEZ-GABITES, JAIME J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $X$ be a compact, metric and totally disconnected space and let $f:X\rightarrow X$ be a continuous map. We relate the eigenvalues of $f_{\ast }:\check{H}_{0}(X;\mathbb{C})\rightarrow \check{H}_{0}(X;\mathbb{C})$ to dynamical properties of $f$, roughly showing that if the dynamics is complicated then every complex number of modulus different from 0, 1 is an eigenvalue. This stands in contrast with a classical inequality of Manning that bounds the entropy of $f$ below by the spectral radius of $f_{\ast }$.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2018.139