Subdiffusion model with time-dependent diffusion coefficient: Integral-balance solution and analysis
The paper addresses approximate integral-balance approach to a time-fractional diffusion equation of order 0 < μ < 1 with a time-dependent diffusion coefficient of power-law type D(t)=D0tβ where 0 < β < 1. The form of the solution spreading in a semi-infinite medium through an analysis o...
Gespeichert in:
Veröffentlicht in: | Thermal science 2017-01, Vol.21 (1 Part A), p.69-80 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The paper addresses approximate integral-balance approach to a time-fractional diffusion equation of order 0 < μ < 1 with a time-dependent diffusion coefficient of power-law type D(t)=D0tβ where 0 < β < 1. The form of the solution spreading in a semi-infinite medium through an analysis of the second moment of the approximate solution reveals that depending on the sum μ+β the solution can model subdiffusive (μ+β1) or Gaussian (μ+β=1) process of transport. The optimal exponents of the approximate parabolic profiles have been determined by minimization the mean squared error of approximation over the penetration depth. |
---|---|
ISSN: | 0354-9836 2334-7163 |
DOI: | 10.2298/TSCI160427247H |