2-Ketoglutarate-Generated In Vitro Enzymatic Biosystem Facilitates Fe(II)/2-Ketoglutarate-Dependent Dioxygenase-Mediated C-H Bond Oxidation for (2s,3r,4s)-4-Hydroxyisoleucine Synthesis

Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-07, Vol.21 (15), p.5347, Article 5347
Hauptverfasser: Jing, Xiao-Ran, Liu, Huan, Nie, Yao, Xu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces the efficiency of Fe(II)/2-KG DO-mediated hydroxylation. Here, we conducted multi-enzymatic syntheses of hydroxy amino acids. Using (2s,3r,4s)-4-hydroxyisoleucine (4-HIL) as a model product, we coupled regio- and stereo-selective hydroxylation ofl-Ile by the dioxygenase IDO with 2-KG generation from readily availablel-Glu byl-glutamate oxidase (LGOX) and catalase (CAT). In the one-pot system, H(2)O(2)significantly inhibited IDO activity and elevated Fe(2+)concentrations of severely repressed LGOX. A sequential cascade reaction was preferable to a single-step process as CAT in the former system hydrolyzed H2O2. We obtained 465 mM 4-HIL at 93% yield in the two-step system. Moreover, this process facilitated C-H hydroxylation of several hydrophobic aliphatic amino acids to produce hydroxy amino acids, and C-H sulfoxidation of sulfur-containingl-amino acids to yieldl-amino acid sulfoxides. Thus, we constructed an efficient cascade reaction to produce 4-HIL by providing prerequisite 2-KG from cheap and plentifull-Glu and developed a strategy for creating enzymatic systems catalyzing 2-KG-dependent reactions in sustainable bioprocesses that synthesize other functional compounds.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms21155347