Critical Point Equation on Almost Kenmotsu Manifolds

We study the critical point equation ( CPE ) conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional ( k, μ ) ' -almost Kenmotsu manifold satisfies the CPE , then the manifold is either locally isometric to the product space ℍ 2 ( − 4) × ℝ or the manifold is a Kenmo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2020-06, Vol.72 (1), p.69-77
Hauptverfasser: De, U. C., Mandal, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the critical point equation ( CPE ) conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional ( k, μ ) ' -almost Kenmotsu manifold satisfies the CPE , then the manifold is either locally isometric to the product space ℍ 2 ( − 4) × ℝ or the manifold is a Kenmotsu manifold. Further, we prove that if the metric of an almost Kenmotsu manifold with conformal Reeb foliation satisfies the CPE conjecture, then the manifold is Einstein.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-020-01770-5