Critical Point Equation on Almost Kenmotsu Manifolds
We study the critical point equation ( CPE ) conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional ( k, μ ) ' -almost Kenmotsu manifold satisfies the CPE , then the manifold is either locally isometric to the product space ℍ 2 ( − 4) × ℝ or the manifold is a Kenmo...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2020-06, Vol.72 (1), p.69-77 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the critical point equation (
CPE
) conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional (
k, μ
)
'
-almost Kenmotsu manifold satisfies the
CPE
, then the manifold is either locally isometric to the product space ℍ
2
(
−
4) × ℝ or the manifold is a Kenmotsu manifold. Further, we prove that if the metric of an almost Kenmotsu manifold with conformal Reeb foliation satisfies the
CPE
conjecture, then the manifold is Einstein. |
---|---|
ISSN: | 0041-5995 1573-9376 |
DOI: | 10.1007/s11253-020-01770-5 |