A time-domain procedure for non-Gaussian stationary environmental testing using zero-memory nonlinear transformation

This article proposes a time-domain procedure for a non-Gaussian stationary random vibration test with prescribed power spectral densities. Previous procedures for generating non-Gaussianity suffered from certain defects. For example, zero-memory nonlinear transformation, an algorithm frequently app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of vibration and control 2020-08, Vol.26 (15-16), p.1197-1213
Hauptverfasser: Cui, Song, Zheng, Enlai, Kang, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1213
container_issue 15-16
container_start_page 1197
container_title Journal of vibration and control
container_volume 26
creator Cui, Song
Zheng, Enlai
Kang, Min
description This article proposes a time-domain procedure for a non-Gaussian stationary random vibration test with prescribed power spectral densities. Previous procedures for generating non-Gaussianity suffered from certain defects. For example, zero-memory nonlinear transformation, an algorithm frequently applied to transform Gaussian signals into non-Gaussian signals, often produces changes in both auto-power spectral densities and cross-power spectral densities, which might result in control instability under certain circumstances. In this article, the authors propose a different approach for the zero-memory nonlinear function. First, a time-domain procedure for a non-Gaussian random test is introduced. Second, a rescaling method is applied to correct the magnitude amplification on the auto-power spectral density because of zero-memory nonlinear transformation. We offer experience formulas in this method to adjust the auto-power spectral density of both super-Gaussian and sub-Gaussian responses. Third, a control strategy using a finite impulse response filter is proposed to further improve the auto-power spectral density if the shape of the auto-power spectral density is distorted. The kurtosis loss induced by the filtering process is also analysed and a corresponding solution is put forward to ease the reduction. Numerical test and a biaxial shaker table test are conducted to validate the availability and superiority of the proposed procedure.
doi_str_mv 10.1177/1077546319894853
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2429455495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1077546319894853</sage_id><sourcerecordid>2429455495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-18f89a6c13e589c5c3565cd7888c337d224776766415e8f3edc23b9438ec629f3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJg_bh7DHiOJptkkxxL0SoUvOh5idnZktJNapIV9NebWkEQvMwMzHtv5j2Erhi9YUypW0aVkqLlzGgjtORHaMaUYKQxuj2uc12T_f4UneW8oZQKwegMlTkufgTSx9H6gHcpOuinBHiICYcYyNJOOXsbcC62-Bhs-sAQ3n2KYYRQ7BYXyMWHNZ7yvn5CimSEMVZc5W99AJtwSTbkKjl-a1ygk8FuM1z-9HP0cn_3vHggq6fl42K-Io4LXQjTgza2dYyD1MZJx2UrXa-01o5z1TeNUKpVbSuYBD1w6F3DX43gGlzbmIGfo-uDbrX1NtU3u02cUqgnu0Y0RkgpjKwoekC5FHNOMHS75Mfqs2O022fb_c22UsiBku0afkX_xX8BbBZ7AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429455495</pqid></control><display><type>article</type><title>A time-domain procedure for non-Gaussian stationary environmental testing using zero-memory nonlinear transformation</title><source>SAGE Complete A-Z List</source><creator>Cui, Song ; Zheng, Enlai ; Kang, Min</creator><creatorcontrib>Cui, Song ; Zheng, Enlai ; Kang, Min</creatorcontrib><description>This article proposes a time-domain procedure for a non-Gaussian stationary random vibration test with prescribed power spectral densities. Previous procedures for generating non-Gaussianity suffered from certain defects. For example, zero-memory nonlinear transformation, an algorithm frequently applied to transform Gaussian signals into non-Gaussian signals, often produces changes in both auto-power spectral densities and cross-power spectral densities, which might result in control instability under certain circumstances. In this article, the authors propose a different approach for the zero-memory nonlinear function. First, a time-domain procedure for a non-Gaussian random test is introduced. Second, a rescaling method is applied to correct the magnitude amplification on the auto-power spectral density because of zero-memory nonlinear transformation. We offer experience formulas in this method to adjust the auto-power spectral density of both super-Gaussian and sub-Gaussian responses. Third, a control strategy using a finite impulse response filter is proposed to further improve the auto-power spectral density if the shape of the auto-power spectral density is distorted. The kurtosis loss induced by the filtering process is also analysed and a corresponding solution is put forward to ease the reduction. Numerical test and a biaxial shaker table test are conducted to validate the availability and superiority of the proposed procedure.</description><identifier>ISSN: 1077-5463</identifier><identifier>EISSN: 1741-2986</identifier><identifier>DOI: 10.1177/1077546319894853</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Algorithms ; Control stability ; Environmental testing ; FIR filters ; Kurtosis ; Power spectral density ; Random vibration ; Rescaling ; Spectra ; Time domain analysis ; Transformations (mathematics) ; Vibration ; Vibration tests</subject><ispartof>Journal of vibration and control, 2020-08, Vol.26 (15-16), p.1197-1213</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-18f89a6c13e589c5c3565cd7888c337d224776766415e8f3edc23b9438ec629f3</citedby><cites>FETCH-LOGICAL-c348t-18f89a6c13e589c5c3565cd7888c337d224776766415e8f3edc23b9438ec629f3</cites><orcidid>0000-0002-0416-9589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1077546319894853$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1077546319894853$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21800,27903,27904,43599,43600</link.rule.ids></links><search><creatorcontrib>Cui, Song</creatorcontrib><creatorcontrib>Zheng, Enlai</creatorcontrib><creatorcontrib>Kang, Min</creatorcontrib><title>A time-domain procedure for non-Gaussian stationary environmental testing using zero-memory nonlinear transformation</title><title>Journal of vibration and control</title><description>This article proposes a time-domain procedure for a non-Gaussian stationary random vibration test with prescribed power spectral densities. Previous procedures for generating non-Gaussianity suffered from certain defects. For example, zero-memory nonlinear transformation, an algorithm frequently applied to transform Gaussian signals into non-Gaussian signals, often produces changes in both auto-power spectral densities and cross-power spectral densities, which might result in control instability under certain circumstances. In this article, the authors propose a different approach for the zero-memory nonlinear function. First, a time-domain procedure for a non-Gaussian random test is introduced. Second, a rescaling method is applied to correct the magnitude amplification on the auto-power spectral density because of zero-memory nonlinear transformation. We offer experience formulas in this method to adjust the auto-power spectral density of both super-Gaussian and sub-Gaussian responses. Third, a control strategy using a finite impulse response filter is proposed to further improve the auto-power spectral density if the shape of the auto-power spectral density is distorted. The kurtosis loss induced by the filtering process is also analysed and a corresponding solution is put forward to ease the reduction. Numerical test and a biaxial shaker table test are conducted to validate the availability and superiority of the proposed procedure.</description><subject>Algorithms</subject><subject>Control stability</subject><subject>Environmental testing</subject><subject>FIR filters</subject><subject>Kurtosis</subject><subject>Power spectral density</subject><subject>Random vibration</subject><subject>Rescaling</subject><subject>Spectra</subject><subject>Time domain analysis</subject><subject>Transformations (mathematics)</subject><subject>Vibration</subject><subject>Vibration tests</subject><issn>1077-5463</issn><issn>1741-2986</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJg_bh7DHiOJptkkxxL0SoUvOh5idnZktJNapIV9NebWkEQvMwMzHtv5j2Erhi9YUypW0aVkqLlzGgjtORHaMaUYKQxuj2uc12T_f4UneW8oZQKwegMlTkufgTSx9H6gHcpOuinBHiICYcYyNJOOXsbcC62-Bhs-sAQ3n2KYYRQ7BYXyMWHNZ7yvn5CimSEMVZc5W99AJtwSTbkKjl-a1ygk8FuM1z-9HP0cn_3vHggq6fl42K-Io4LXQjTgza2dYyD1MZJx2UrXa-01o5z1TeNUKpVbSuYBD1w6F3DX43gGlzbmIGfo-uDbrX1NtU3u02cUqgnu0Y0RkgpjKwoekC5FHNOMHS75Mfqs2O022fb_c22UsiBku0afkX_xX8BbBZ7AQ</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Cui, Song</creator><creator>Zheng, Enlai</creator><creator>Kang, Min</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0416-9589</orcidid></search><sort><creationdate>20200801</creationdate><title>A time-domain procedure for non-Gaussian stationary environmental testing using zero-memory nonlinear transformation</title><author>Cui, Song ; Zheng, Enlai ; Kang, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-18f89a6c13e589c5c3565cd7888c337d224776766415e8f3edc23b9438ec629f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Control stability</topic><topic>Environmental testing</topic><topic>FIR filters</topic><topic>Kurtosis</topic><topic>Power spectral density</topic><topic>Random vibration</topic><topic>Rescaling</topic><topic>Spectra</topic><topic>Time domain analysis</topic><topic>Transformations (mathematics)</topic><topic>Vibration</topic><topic>Vibration tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Song</creatorcontrib><creatorcontrib>Zheng, Enlai</creatorcontrib><creatorcontrib>Kang, Min</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of vibration and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Song</au><au>Zheng, Enlai</au><au>Kang, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A time-domain procedure for non-Gaussian stationary environmental testing using zero-memory nonlinear transformation</atitle><jtitle>Journal of vibration and control</jtitle><date>2020-08-01</date><risdate>2020</risdate><volume>26</volume><issue>15-16</issue><spage>1197</spage><epage>1213</epage><pages>1197-1213</pages><issn>1077-5463</issn><eissn>1741-2986</eissn><abstract>This article proposes a time-domain procedure for a non-Gaussian stationary random vibration test with prescribed power spectral densities. Previous procedures for generating non-Gaussianity suffered from certain defects. For example, zero-memory nonlinear transformation, an algorithm frequently applied to transform Gaussian signals into non-Gaussian signals, often produces changes in both auto-power spectral densities and cross-power spectral densities, which might result in control instability under certain circumstances. In this article, the authors propose a different approach for the zero-memory nonlinear function. First, a time-domain procedure for a non-Gaussian random test is introduced. Second, a rescaling method is applied to correct the magnitude amplification on the auto-power spectral density because of zero-memory nonlinear transformation. We offer experience formulas in this method to adjust the auto-power spectral density of both super-Gaussian and sub-Gaussian responses. Third, a control strategy using a finite impulse response filter is proposed to further improve the auto-power spectral density if the shape of the auto-power spectral density is distorted. The kurtosis loss induced by the filtering process is also analysed and a corresponding solution is put forward to ease the reduction. Numerical test and a biaxial shaker table test are conducted to validate the availability and superiority of the proposed procedure.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1077546319894853</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0416-9589</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1077-5463
ispartof Journal of vibration and control, 2020-08, Vol.26 (15-16), p.1197-1213
issn 1077-5463
1741-2986
language eng
recordid cdi_proquest_journals_2429455495
source SAGE Complete A-Z List
subjects Algorithms
Control stability
Environmental testing
FIR filters
Kurtosis
Power spectral density
Random vibration
Rescaling
Spectra
Time domain analysis
Transformations (mathematics)
Vibration
Vibration tests
title A time-domain procedure for non-Gaussian stationary environmental testing using zero-memory nonlinear transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20time-domain%20procedure%20for%20non-Gaussian%20stationary%20environmental%20testing%20using%20zero-memory%20nonlinear%20transformation&rft.jtitle=Journal%20of%20vibration%20and%20control&rft.au=Cui,%20Song&rft.date=2020-08-01&rft.volume=26&rft.issue=15-16&rft.spage=1197&rft.epage=1213&rft.pages=1197-1213&rft.issn=1077-5463&rft.eissn=1741-2986&rft_id=info:doi/10.1177/1077546319894853&rft_dat=%3Cproquest_cross%3E2429455495%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429455495&rft_id=info:pmid/&rft_sage_id=10.1177_1077546319894853&rfr_iscdi=true