A time-domain procedure for non-Gaussian stationary environmental testing using zero-memory nonlinear transformation
This article proposes a time-domain procedure for a non-Gaussian stationary random vibration test with prescribed power spectral densities. Previous procedures for generating non-Gaussianity suffered from certain defects. For example, zero-memory nonlinear transformation, an algorithm frequently app...
Gespeichert in:
Veröffentlicht in: | Journal of vibration and control 2020-08, Vol.26 (15-16), p.1197-1213 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article proposes a time-domain procedure for a non-Gaussian stationary random vibration test with prescribed power spectral densities. Previous procedures for generating non-Gaussianity suffered from certain defects. For example, zero-memory nonlinear transformation, an algorithm frequently applied to transform Gaussian signals into non-Gaussian signals, often produces changes in both auto-power spectral densities and cross-power spectral densities, which might result in control instability under certain circumstances. In this article, the authors propose a different approach for the zero-memory nonlinear function. First, a time-domain procedure for a non-Gaussian random test is introduced. Second, a rescaling method is applied to correct the magnitude amplification on the auto-power spectral density because of zero-memory nonlinear transformation. We offer experience formulas in this method to adjust the auto-power spectral density of both super-Gaussian and sub-Gaussian responses. Third, a control strategy using a finite impulse response filter is proposed to further improve the auto-power spectral density if the shape of the auto-power spectral density is distorted. The kurtosis loss induced by the filtering process is also analysed and a corresponding solution is put forward to ease the reduction. Numerical test and a biaxial shaker table test are conducted to validate the availability and superiority of the proposed procedure. |
---|---|
ISSN: | 1077-5463 1741-2986 |
DOI: | 10.1177/1077546319894853 |