Hardware in the Loop Simulation and Control Design for Autonomous Free Running Ship Models

This paper presents an hardware-in-the-loop (HIL) simulation system tool to test and validate an autonomous free running model system for ship hydrodynamic studies with a view to verification of the code, the control logic and system peripherals. The computer simulation of the plant model in real-ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Defense science journal 2020-07, Vol.70 (4), p.469-476
Hauptverfasser: Dubey, Awanish Chandra, Subramanian, Anantha V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an hardware-in-the-loop (HIL) simulation system tool to test and validate an autonomous free running model system for ship hydrodynamic studies with a view to verification of the code, the control logic and system peripherals. The computer simulation of the plant model in real-time computer does not require the actual physical system and reduces the development cost and time for control design and testing purposes. The HIL system includes: the actual programmable embedded controller along with peripherals and a plant model virtually simulated in a real-time computer. With regard to ship controller design for ship model testing, this study describes a plant model for surge and a Nomoto first order steering dynamics, both implemented using Simulink software suit. The surge model captures a quasi-steady state relationship between surge speed and the propeller rpms, obtained from simple forward speed towing tank tests or derived analytically. The Nomoto first order steering dynamics is obtained by performing the standard turning circle test at model scale. The control logic obtained is embedded in a NI-cRIO based controller. The surge and steering dynamics models are used to design a proportional-derivative controller and an LQR controller. The controller runs a Linux based real-time operating system programmed using LabVIEW software. The HIL simulation tool allows for the emulation of standard ship hydrodynamic tests consisting of straight line, turning circle and zigzag to validate the combined system performance, prior to actual for use in the autonomous free-running tests.
ISSN:0011-748X
0976-464X
DOI:10.14429/dsj.70.14926