Homotopy perturbation method to MHD non-Newtonian nanofluid flow through a porous medium in eccentric annuli with peristalsis

In this contribution, the magnetohydrodynamic non-Newtonian nanofluid flow through a porous medium in eccentric annuli with peristalsis is investigated. This has been done under the combined effect of viscous dissipation and radiation. The inner annulus is rigid and at rest, while the outer annulus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2017-01, Vol.21 (5), p.2069-2080
1. Verfasser: Abou-Zeid, Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this contribution, the magnetohydrodynamic non-Newtonian nanofluid flow through a porous medium in eccentric annuli with peristalsis is investigated. This has been done under the combined effect of viscous dissipation and radiation. The inner annulus is rigid and at rest, while the outer annulus has a sinusoidal wave traveling down its wall. The fundamental equations are modulated under the long wave length assumptions, and a closed form of solution is obtained for the axial velocity. While, homotopy perturbation solution is obtained, which satisfies the energy and nanoparticles equations. Numerical results for the axial velocity, temperature, and nanoparticles phenomena distributions as well as the reduced Nusselt and Sherwood numbers are obtained and tabulated for various parametric conditions. nema
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI150215079A