Bearing fault detection by four-band wavelet packet decomposition

Bearing problems are by far the biggest cause of induction motor failures in the industry. Since induction machines are used heavily by the industry, their unexpected failure may disturb the production process. Motor condition monitoring is employed widely to avoid such unexpected failures. The data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2019, Vol.23 (Suppl. 1), p.91-98
1. Verfasser: Cekic, Yalcin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bearing problems are by far the biggest cause of induction motor failures in the industry. Since induction machines are used heavily by the industry, their unexpected failure may disturb the production process. Motor condition monitoring is employed widely to avoid such unexpected failures. The data that can be obtained from induction machines are non-stationary by nature since the loading may vary during their operation. Wavelet packet decomposition seems to better handle non-stationary nature of induction machines, the use of this method in monitoring applications is limited, since the computational complexity is higher than other methods. In this work four-band wavelet packet decomposition of motor vibration data is proposed to reduce the computational complexity without compromising accuracy. The proposed method is very suitable for parallel computational processing by its nature, and as a result it is predicted that the calculation time will be shortened further if field-progammable gate array is used in design. nema
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI180927333C