Radius problems for functions associated with a nephroid domain
Let S Ne ∗ be the collection of all analytic functions f ( z ) defined on the open unit disk D and satisfying the normalizations f ( 0 ) = f ′ ( 0 ) - 1 = 0 such that the quantity z f ′ ( z ) / f ( z ) assumes values from the range of the function φ Ne ( z ) : = 1 + z - z 3 / 3 , z ∈ D , which is th...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2020-10, Vol.114 (4), Article 178 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
S
Ne
∗
be the collection of all analytic functions
f
(
z
) defined on the open unit disk
D
and satisfying the normalizations
f
(
0
)
=
f
′
(
0
)
-
1
=
0
such that the quantity
z
f
′
(
z
)
/
f
(
z
)
assumes values from the range of the function
φ
Ne
(
z
)
:
=
1
+
z
-
z
3
/
3
,
z
∈
D
, which is the interior of the nephroid given by
(
u
-
1
)
2
+
v
2
-
4
9
3
-
4
v
2
3
=
0
.
In this work, we find sharp
S
Ne
∗
-radii for several geometrically defined function classes introduced in the recent past. In particular,
S
Ne
∗
-radius for the starlike class
S
∗
is found to be 1/4. Moreover, radii problems related to the families defined in terms of ratio of functions are also discussed. Sharpness of certain radii estimates are illustrated graphically. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-020-00913-4 |