Lie algebra of homogeneous operators of a vector bundle
We prove that for a vector bundle \( E \to M\), the Lie algebra \(\mathcal{D}_{\mathcal{E}}(E)\) generated by all differential operators on \(E\) which are eigenvectors of \(L_{\mathcal{E}},\) the Lie derivative in the direction of the Euler vector field of \(E,\) and the Lie algebra \(\mathcal{D}_G...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that for a vector bundle \( E \to M\), the Lie algebra \(\mathcal{D}_{\mathcal{E}}(E)\) generated by all differential operators on \(E\) which are eigenvectors of \(L_{\mathcal{E}},\) the Lie derivative in the direction of the Euler vector field of \(E,\) and the Lie algebra \(\mathcal{D}_G(E)\) obtained by Grothendieck construction over the \(\mathbb{R}-\)algebra \(\mathcal{A}(E):= {\rm Pol}(E)\) of fiberwise polynomial functions, coincide up an isomorphism. This allows us to compute all the derivations of the \(\mathbb{R}-\)algebra \(\mathcal{A}(E)\) and to obtain an explicit description of the Lie algebra of zero-weight derivations of \(\mathcal{A}(E).\) |
---|---|
ISSN: | 2331-8422 |