On Pursell-Shanks type results

We prove a Lie-algebraic characterization of vector bundle for the Lie algebra \(\mathcal{D}(E,M),\) seen as \({\rm C}^\infty(M)-\)module, of all linear operators acting on sections of a vector bundle \(E\to M\). We obtain similar result for its Lie subalgebra \(\mathcal{D}^1(E,M)\) of all linear fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Lecomte, Pierre B A, Elie Zihindula Mushengezi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Lecomte, Pierre B A
Elie Zihindula Mushengezi
description We prove a Lie-algebraic characterization of vector bundle for the Lie algebra \(\mathcal{D}(E,M),\) seen as \({\rm C}^\infty(M)-\)module, of all linear operators acting on sections of a vector bundle \(E\to M\). We obtain similar result for its Lie subalgebra \(\mathcal{D}^1(E,M)\) of all linear first-order differential operators. Thanks to a well-chosen filtration, \(\mathcal{D}(E,M)\) becomes \(\mathcal{P}(E,M)\) and we prove that \(\mathcal{P}^1(E,M)\) characterizes the vector bundle without the hypothesis of being seen as \({\rm C}^\infty(M)-\)module. We prove that the Lie algebra \(\mathcal{S}(\mathcal{P}(E,M))\) of symbols of linear operators acting on smooth sections of a vector bundle \(E\to M,\) characterizes it. To obtain this, we assume that \(\mathcal{S}(\mathcal{P}(E,M))\) is seen as \({\rm C}^\infty(M)-\)module. We obtain a similar result with the Lie algebra \(\mathcal{S}^1(\mathcal{P}(E,M))\) of symbols of first-order linear operators without the hypothesis of being seen as a \({\rm C}^\infty(M)-\)module.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2428780134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428780134</sourcerecordid><originalsourceid>FETCH-proquest_journals_24287801343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ889TCCgtKk7NydENzkjMyy5WKKksSFUoSi0uzSkp5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTIwtzCwNDYxNj4lQBAI4SLF4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428780134</pqid></control><display><type>article</type><title>On Pursell-Shanks type results</title><source>Free E- Journals</source><creator>Lecomte, Pierre B A ; Elie Zihindula Mushengezi</creator><creatorcontrib>Lecomte, Pierre B A ; Elie Zihindula Mushengezi</creatorcontrib><description>We prove a Lie-algebraic characterization of vector bundle for the Lie algebra \(\mathcal{D}(E,M),\) seen as \({\rm C}^\infty(M)-\)module, of all linear operators acting on sections of a vector bundle \(E\to M\). We obtain similar result for its Lie subalgebra \(\mathcal{D}^1(E,M)\) of all linear first-order differential operators. Thanks to a well-chosen filtration, \(\mathcal{D}(E,M)\) becomes \(\mathcal{P}(E,M)\) and we prove that \(\mathcal{P}^1(E,M)\) characterizes the vector bundle without the hypothesis of being seen as \({\rm C}^\infty(M)-\)module. We prove that the Lie algebra \(\mathcal{S}(\mathcal{P}(E,M))\) of symbols of linear operators acting on smooth sections of a vector bundle \(E\to M,\) characterizes it. To obtain this, we assume that \(\mathcal{S}(\mathcal{P}(E,M))\) is seen as \({\rm C}^\infty(M)-\)module. We obtain a similar result with the Lie algebra \(\mathcal{S}^1(\mathcal{P}(E,M))\) of symbols of first-order linear operators without the hypothesis of being seen as a \({\rm C}^\infty(M)-\)module.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Bundling ; Differential equations ; Lie groups ; Linear operators ; Operators (mathematics)</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Lecomte, Pierre B A</creatorcontrib><creatorcontrib>Elie Zihindula Mushengezi</creatorcontrib><title>On Pursell-Shanks type results</title><title>arXiv.org</title><description>We prove a Lie-algebraic characterization of vector bundle for the Lie algebra \(\mathcal{D}(E,M),\) seen as \({\rm C}^\infty(M)-\)module, of all linear operators acting on sections of a vector bundle \(E\to M\). We obtain similar result for its Lie subalgebra \(\mathcal{D}^1(E,M)\) of all linear first-order differential operators. Thanks to a well-chosen filtration, \(\mathcal{D}(E,M)\) becomes \(\mathcal{P}(E,M)\) and we prove that \(\mathcal{P}^1(E,M)\) characterizes the vector bundle without the hypothesis of being seen as \({\rm C}^\infty(M)-\)module. We prove that the Lie algebra \(\mathcal{S}(\mathcal{P}(E,M))\) of symbols of linear operators acting on smooth sections of a vector bundle \(E\to M,\) characterizes it. To obtain this, we assume that \(\mathcal{S}(\mathcal{P}(E,M))\) is seen as \({\rm C}^\infty(M)-\)module. We obtain a similar result with the Lie algebra \(\mathcal{S}^1(\mathcal{P}(E,M))\) of symbols of first-order linear operators without the hypothesis of being seen as a \({\rm C}^\infty(M)-\)module.</description><subject>Algebra</subject><subject>Bundling</subject><subject>Differential equations</subject><subject>Lie groups</subject><subject>Linear operators</subject><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQ889TCCgtKk7NydENzkjMyy5WKKksSFUoSi0uzSkp5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMTIwtzCwNDYxNj4lQBAI4SLF4</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Lecomte, Pierre B A</creator><creator>Elie Zihindula Mushengezi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240312</creationdate><title>On Pursell-Shanks type results</title><author>Lecomte, Pierre B A ; Elie Zihindula Mushengezi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_24287801343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Bundling</topic><topic>Differential equations</topic><topic>Lie groups</topic><topic>Linear operators</topic><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Lecomte, Pierre B A</creatorcontrib><creatorcontrib>Elie Zihindula Mushengezi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lecomte, Pierre B A</au><au>Elie Zihindula Mushengezi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On Pursell-Shanks type results</atitle><jtitle>arXiv.org</jtitle><date>2024-03-12</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove a Lie-algebraic characterization of vector bundle for the Lie algebra \(\mathcal{D}(E,M),\) seen as \({\rm C}^\infty(M)-\)module, of all linear operators acting on sections of a vector bundle \(E\to M\). We obtain similar result for its Lie subalgebra \(\mathcal{D}^1(E,M)\) of all linear first-order differential operators. Thanks to a well-chosen filtration, \(\mathcal{D}(E,M)\) becomes \(\mathcal{P}(E,M)\) and we prove that \(\mathcal{P}^1(E,M)\) characterizes the vector bundle without the hypothesis of being seen as \({\rm C}^\infty(M)-\)module. We prove that the Lie algebra \(\mathcal{S}(\mathcal{P}(E,M))\) of symbols of linear operators acting on smooth sections of a vector bundle \(E\to M,\) characterizes it. To obtain this, we assume that \(\mathcal{S}(\mathcal{P}(E,M))\) is seen as \({\rm C}^\infty(M)-\)module. We obtain a similar result with the Lie algebra \(\mathcal{S}^1(\mathcal{P}(E,M))\) of symbols of first-order linear operators without the hypothesis of being seen as a \({\rm C}^\infty(M)-\)module.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2428780134
source Free E- Journals
subjects Algebra
Bundling
Differential equations
Lie groups
Linear operators
Operators (mathematics)
title On Pursell-Shanks type results
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20Pursell-Shanks%20type%20results&rft.jtitle=arXiv.org&rft.au=Lecomte,%20Pierre%20B%20A&rft.date=2024-03-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2428780134%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428780134&rft_id=info:pmid/&rfr_iscdi=true