On Pursell-Shanks type results

We prove a Lie-algebraic characterization of vector bundle for the Lie algebra \(\mathcal{D}(E,M),\) seen as \({\rm C}^\infty(M)-\)module, of all linear operators acting on sections of a vector bundle \(E\to M\). We obtain similar result for its Lie subalgebra \(\mathcal{D}^1(E,M)\) of all linear fi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Lecomte, Pierre B A, Elie Zihindula Mushengezi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a Lie-algebraic characterization of vector bundle for the Lie algebra \(\mathcal{D}(E,M),\) seen as \({\rm C}^\infty(M)-\)module, of all linear operators acting on sections of a vector bundle \(E\to M\). We obtain similar result for its Lie subalgebra \(\mathcal{D}^1(E,M)\) of all linear first-order differential operators. Thanks to a well-chosen filtration, \(\mathcal{D}(E,M)\) becomes \(\mathcal{P}(E,M)\) and we prove that \(\mathcal{P}^1(E,M)\) characterizes the vector bundle without the hypothesis of being seen as \({\rm C}^\infty(M)-\)module. We prove that the Lie algebra \(\mathcal{S}(\mathcal{P}(E,M))\) of symbols of linear operators acting on smooth sections of a vector bundle \(E\to M,\) characterizes it. To obtain this, we assume that \(\mathcal{S}(\mathcal{P}(E,M))\) is seen as \({\rm C}^\infty(M)-\)module. We obtain a similar result with the Lie algebra \(\mathcal{S}^1(\mathcal{P}(E,M))\) of symbols of first-order linear operators without the hypothesis of being seen as a \({\rm C}^\infty(M)-\)module.
ISSN:2331-8422