QoS-aware multi-path video streaming for urban VANETs using ACO algorithm

Drivers can be provided with several beneficial services associated with video streaming in a vehicular ad-hoc network (VANET). Given the dynamic topology and high mobility of VANETs, a single path cannot support the required quality of service (QoS). To maximize global QoS metrics, a two-path model...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Telecommunication systems 2020-09, Vol.75 (1), p.79-96
Hauptverfasser: Vafaei, Mohammad, Khademzadeh, Ahmad, Pourmina, Mohammad Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Drivers can be provided with several beneficial services associated with video streaming in a vehicular ad-hoc network (VANET). Given the dynamic topology and high mobility of VANETs, a single path cannot support the required quality of service (QoS). To maximize global QoS metrics, a two-path model is proposed based on a disjoint algorithm to forward sub-streams over diverse paths from the transmitter to the receiver vehicle. In this solution, the video information spread in separate paths is categorized based on their priority. For this purpose, the protocol for transmitting each kind of video data should be selected cautiously. The present study aims to propose an ant colony optimization-based technique to establish the primary and secondary paths and enhance the QoS of routing paths. To achieve this goal, the QoS routing issue is formulated mathematically as a problem of constrained optimization. Moreover, to achieve high-quality video streaming, inter-frames are transmitted over the user datagram protocol and intra-frames are transmitted over the transmission control protocol (TCP). TCP transmission delays are also minimized using a TCP-ETX algorithm for selecting appropriate paths. According to the simulation results, the proposed two-path solution can be used to improve the quality of video streaming and to enhance the performance in terms of end-to-end delay, packet delivery ratio, and overhead. In this way, the proposed method can outperform several prominent routing algorithms such as adaptive QoS-based routing for VANETs, geographic source routing (GSR), intersection-based geographical routing protocol, and efficient GSR.
ISSN:1018-4864
1572-9451
DOI:10.1007/s11235-020-00677-7