Indoor environmental assessment method in residential kitchen

Nowadays, energy consumption, environmental protection and safety are fundamental issues in design process. In order to reduce energy consumption, buildings become increasingly insulated and air tight. It has controversial effect on indoor environment, therefore, it has become essential to apply an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2020, Vol.24 (3 Part B), p.2055-2065
Hauptverfasser: Vorosne-Leitner, Anita, Kajtar, Laszlo, Nyers, Jozsef
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, energy consumption, environmental protection and safety are fundamental issues in design process. In order to reduce energy consumption, buildings become increasingly insulated and air tight. It has controversial effect on indoor environment, therefore, it has become essential to apply an effective ventilation system. This requires detailed design, especially if there is a strong, local source in the space. In residential buildings, gas stoves are significant source of gaseous pollutants and heat load. Indoor environmental assessments have been carried out in order to evaluate the key parameters. The aim of this studies is to develop a new design and monitoring method of residential kitchens with gas stoves. Primary results of laboratory researches indicate that the largest stovetop burner with power of 2.8 kW, has the main role. Significant emissions of NOx have been measured, in an average size kitchen (Vroom = 36 m3) the Hungarian standard NOx concentration level (200 ?g/m3) can be ensured with an exhaust air-flow of 1102 m3/h. With respect of thermal environmental parameters, heat loads of residential gas stoves could be characterized with convective heat transfer coefficient of 4.5 W/m2K and radiant heat transfer coefficient of 5.9 W/m2K. As regards thermal comfort parameters, predicted mean rate index in proved to be applicable in residential kitchens from ?0.3 to +2.0. However draught rating cannot be applied, with respect to the temperature limitations. nema
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI180527318V