Structural parameters study on stainless-steel flat-tube heat exchangers with corrugated fins

A stainless steel corrugated fins and flat-tube heat exchanger is designed, which has a plate-fin structure. To optimize the structural parameters of this exchanger, including corrugation angle, corrugation pitch and fin length, 3-D simulation model and test were proposed. The numerical results indi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2020, Vol.24 (5 Part A), p.2743-2756
Hauptverfasser: Gao, Guifeng, Wang, Fei, Cui, Yongzhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A stainless steel corrugated fins and flat-tube heat exchanger is designed, which has a plate-fin structure. To optimize the structural parameters of this exchanger, including corrugation angle, corrugation pitch and fin length, 3-D simulation model and test were proposed. The numerical results indicated that the corrugation angle significantly affects both on heat transfer performance and pressure drop. The fin with angle, A = 0~20?, have demonstrated the higher heat transfer efficiency, lesser gas condensation, lower pressure drop, higher outlet flue gas temperature in low T region, and no exceeding the distortion temperature in high T region. Corrugation pitch and fin length influence thermal and hydraulic characteristics, outlet flue gas temperature, and fin temperature. To improve heat transfer performance, and reduce the fin temperature in high T region and ease gas condensation in low T region, smaller corrugation pitch and shorter fin length were recommended in the low T region, whereas higher values were more reasonable in high T region. Noticeably, the heat transfer and flow characteristics were better in the high T region than the low T region. Therefore, higher priority should be given to the structural optimization in the high T region in order to in-crease the heat transfer enhancement nema
ISSN:0354-9836
2334-7163
DOI:10.2298/TSCI191105008G