Double cross-linked supramolecular hydrogels with tunable properties based on host-guest interactions
We report a novel double cross-linked hydrogel system based on polyacrylamide and poly(2-methyl-2-oxazoline) (PMOXA) network chains, as well as on supramolecular host-guest interactions with on-demand tailored mechanical properties. Well-defined vinyl-bearing PMOXA macromonomers, functionalized with...
Gespeichert in:
Veröffentlicht in: | Soft matter 2020-07, Vol.16 (29), p.6733-6742 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report a novel double cross-linked hydrogel system based on polyacrylamide and poly(2-methyl-2-oxazoline) (PMOXA) network chains, as well as on supramolecular host-guest interactions with on-demand tailored mechanical properties. Well-defined vinyl-bearing PMOXA macromonomers, functionalized with either β-cyclodextrin units (β-CD-PMOXA) or adamantane units (Ada-PMOXA), were synthesized and confirmed using
1
H NMR, MALDI-TOF-MS and GPC measurements. The complexation between adamantane and β-CD modified macromonomers in solution towards bismacromonomers was confirmed by 2D NOESY NMR and DLS. After introducing these bismacromonomers into the polyacrylamide hydrogel, the supramolecular non-covalent Ada/β-CD bond was responsible for the presence of PMOXA network chains to form a dense network. Once the interactions broke, the PMOXA chains no longer contributed to the network, but became dangling graft side chains in a predominated polyacrylamide network. Their dissociative nature influenced the physical properties, including the swelling behavior and mechanics of the final hydrogel. Rheological experiments proved that the E-modulus of the network was significantly increased by the supramolecular host-guest interactions. Tuning the lengths of PMOXA network chains even allowed the modification of the changes in mechanical strength, also through the addition of free β-CD. The tunable properties of the double cross-linked supramolecular hydrogel proved their unique strength for future applications.
We report a novel double cross-linked hydrogel system based on polyacrylamide and poly(2-methyl-2-oxazoline) (PMOXA) network chains, as well as on supramolecular host-guest interactions with on-demand tailored mechanical properties. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/d0sm00833h |