Not all PLA filaments are created equal: an experimental investigation
Purpose Additive manufacturing (AM) methods such as material extrusion (ME) are becoming widely used by engineers, designers and hobbyists alike for a wide variety of applications. Successfully manufacturing objects using ME three-dimensional printers can often require numerous iterations to attain...
Gespeichert in:
Veröffentlicht in: | Rapid prototyping journal 2020-07, Vol.26 (7), p.1263-1276 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Additive manufacturing (AM) methods such as material extrusion (ME) are becoming widely used by engineers, designers and hobbyists alike for a wide variety of applications. Successfully manufacturing objects using ME three-dimensional printers can often require numerous iterations to attain predictable performance because the exact mechanical behavior of parts fabricated via additive processes are difficult to predict. One of that factors that contributes to this difficulty is the wide variety of ME feed stock materials currently available in the marketplace. These build materials are often sold based on their base polymer material such as acrylonitrile butadiene styrene or polylactic acid (PLA), but are produced by numerous different commercial suppliers in a wide variety of colors using typically undisclosed additive feed stocks and base polymer formulations. This paper aims to present the results from an experimental study concerned with quantifying how these sources of polymer variability can affect the mechanical behavior of three-dimensional printed objects. Specifically, the set of experiments conducted in this study focused on following: several different colors of PLA filament from a single commercial supplier to explore the effect of color additives and three filaments of the same color but produced by three different suppliers to account for potential variations in polymer formulation.
Design/methodology/approach
A set of five common mechanical and material characterization tests were performed on 11 commercially available PLA filaments in an effort to gain insight into the variations in mechanical response that stem from variances in filament manufacturer, feed stock polymer, additives and processing. Three black PLA filaments were purchased from three different commercial suppliers to consider the variations introduced by use of different feed stock polymers and filament processing by different manufacturers. An additional eight PLA filaments in varying colors were purchased from one of the three suppliers to focus on how color additives lead to property variations. Some tests were performed on unprocessed filament samples, while others were performed on objects three-dimensional printed from the various filaments. This study looked specifically at four mechanical properties (Young’s modulus, storage modulus, yield strength and toughness) as a function of numerous material properties (e.g. additive loading, molecular weight, molecular |
---|---|
ISSN: | 1355-2546 1758-7670 |
DOI: | 10.1108/RPJ-06-2019-0179 |