Importance of Angle-dependent Partial Frequency Redistribution in Hyperfine Structure Transitions Under the Incomplete Paschen-Back Effect Regime

Angle-frequency coupling in scattering of polarized light on atoms is represented by the angle-dependent (AD) partial frequency redistribution (PRD) matrices. There are several lines in the linearly polarized solar spectrum, for which PRD combined with quantum interference between hyperfine structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2020-07, Vol.898 (1), p.49
Hauptverfasser: Nagendra, K. N., Sowmya, K., Sampoorna, M., Stenflo, J. O., Anusha, L. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Angle-frequency coupling in scattering of polarized light on atoms is represented by the angle-dependent (AD) partial frequency redistribution (PRD) matrices. There are several lines in the linearly polarized solar spectrum, for which PRD combined with quantum interference between hyperfine structure states play a significant role. Here we present the solution of the polarized line transfer equation including the AD-PRD matrix for scattering on a two-level atom with hyperfine structure splitting and an unpolarized lower level. We account for the effects of arbitrary magnetic fields (including the incomplete Paschen-Back effect regime) and elastic collisions. For exploratory purposes we consider a self-emitting isothermal planar atmosphere and use atomic parameters that represent an isolated Na i D2 line. For this case we show that the AD-PRD effects are significant for field strengths below about 30 G, but that the computationally much less demanding approximation of angle-averaged PRD may be used for stronger fields.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab9747