Importance of Angle-dependent Partial Frequency Redistribution in Hyperfine Structure Transitions Under the Incomplete Paschen-Back Effect Regime
Angle-frequency coupling in scattering of polarized light on atoms is represented by the angle-dependent (AD) partial frequency redistribution (PRD) matrices. There are several lines in the linearly polarized solar spectrum, for which PRD combined with quantum interference between hyperfine structur...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-07, Vol.898 (1), p.49 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Angle-frequency coupling in scattering of polarized light on atoms is represented by the angle-dependent (AD) partial frequency redistribution (PRD) matrices. There are several lines in the linearly polarized solar spectrum, for which PRD combined with quantum interference between hyperfine structure states play a significant role. Here we present the solution of the polarized line transfer equation including the AD-PRD matrix for scattering on a two-level atom with hyperfine structure splitting and an unpolarized lower level. We account for the effects of arbitrary magnetic fields (including the incomplete Paschen-Back effect regime) and elastic collisions. For exploratory purposes we consider a self-emitting isothermal planar atmosphere and use atomic parameters that represent an isolated Na i D2 line. For this case we show that the AD-PRD effects are significant for field strengths below about 30 G, but that the computationally much less demanding approximation of angle-averaged PRD may be used for stronger fields. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ab9747 |