Iterative Solution of Saddle-Point Systems of Linear Equations

The paper considers preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations (SLAEs) with a saddle point arising from grid approximations of threedimensional boundary-value problems of various types describing filtration flows of a two-phase incompressib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.249 (2), p.199-208
Hauptverfasser: Il’in, V. P., Kazantcev, G. Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper considers preconditioned iterative methods in Krylov subspaces for solving systems of linear algebraic equations (SLAEs) with a saddle point arising from grid approximations of threedimensional boundary-value problems of various types describing filtration flows of a two-phase incompressible fluid. A comparative analysis of up-to-date approaches to block preconditioning of SLAEs under consideration, including issues of scalable parallelization of algorithms on multiprocessor computing systems with distributed and hierarchical shared memory using hybrid programming tools, is presented. A regularized Uzawa algorithm using a two-level iterative process is proposed. Results of numerical experiments for the Dirichlet and Neumann model boundary-value problems are provided and discussed. Bibliography: 15 titles.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-04934-7