Rationally Verifiable Necessary Conditions for Hermitian Congruence of Complex Matrices
A finite computational process using arithmetic operations only is called a rational algorithm. Matrices A and F are said to be Hermitian congruent if F = Q ∗ AQ for a nonsingular matrix Q. The paper is a survey of the necessary conditions for Hermitian congruences that are verifiable by rational al...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.249 (2), p.189-194 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 2 |
container_start_page | 189 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 249 |
creator | Ikramov, Kh. D. |
description | A finite computational process using arithmetic operations only is called a rational algorithm. Matrices A and F are said to be Hermitian congruent if F = Q
∗
AQ for a nonsingular matrix Q. The paper is a survey of the necessary conditions for Hermitian congruences that are verifiable by rational algorithms. Bibliography: 7 titles. |
doi_str_mv | 10.1007/s10958-020-04932-9 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2427544607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A662609511</galeid><sourcerecordid>A662609511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4639-10cd44196e3bc3bdf2903610688671bc30ec3c4c86408bfec966a8e29b934aa63</originalsourceid><addsrcrecordid>eNqNkl1LHDEUhodSQav-Aa8GetWLaL42H5eytCqsLaitlyGTPRkiM5NtMgv675vtCu7Coksukpw87xty8lbVGcHnBGN5kQnWE4UwxQhzzSjSn6ojMpEMKaknn8saS4oYk_yw-pLzEy4iodhR9XhnxxAH23Uv9R9IwQfbdFD_BAc52_RST-MwDysk1z6m-hpSX7Z2WB20aQmDgzr6susXHTzXt3ZMoWhPqgNvuwynr_Nx9fvH94fpNZr9urqZXs6Q44JpRLCbc060ANY41sw91ZgJgoVSQpJSwuCY404JjlXjwWkhrAKqG824tYIdV1_XvosU_y4hj-YpLlN5TzaUUznhXGD5RrW2AxMGH8dkXR-yM5elDVxIpsj7lKCitJisKLSDamGAZLs4gA-lvOW6F7_hf76DL2MOfXA7L9hPsHHDty1BYUZ4Hlu7zNnc3N9tm3_IbvjSNetSzDmBN4sU-hIiQ7BZxdSsY2pKTM3_mBpdRGwtygUeWkhvH_iO6h-8-eSF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427544607</pqid></control><display><type>article</type><title>Rationally Verifiable Necessary Conditions for Hermitian Congruence of Complex Matrices</title><source>SpringerNature Journals</source><creator>Ikramov, Kh. D.</creator><creatorcontrib>Ikramov, Kh. D.</creatorcontrib><description>A finite computational process using arithmetic operations only is called a rational algorithm. Matrices A and F are said to be Hermitian congruent if F = Q
∗
AQ for a nonsingular matrix Q. The paper is a survey of the necessary conditions for Hermitian congruences that are verifiable by rational algorithms. Bibliography: 7 titles.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-020-04932-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Congruences ; Mathematics ; Mathematics and Statistics</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.249 (2), p.189-194</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4639-10cd44196e3bc3bdf2903610688671bc30ec3c4c86408bfec966a8e29b934aa63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-020-04932-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-020-04932-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ikramov, Kh. D.</creatorcontrib><title>Rationally Verifiable Necessary Conditions for Hermitian Congruence of Complex Matrices</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>A finite computational process using arithmetic operations only is called a rational algorithm. Matrices A and F are said to be Hermitian congruent if F = Q
∗
AQ for a nonsingular matrix Q. The paper is a survey of the necessary conditions for Hermitian congruences that are verifiable by rational algorithms. Bibliography: 7 titles.</description><subject>Algorithms</subject><subject>Congruences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqNkl1LHDEUhodSQav-Aa8GetWLaL42H5eytCqsLaitlyGTPRkiM5NtMgv675vtCu7Coksukpw87xty8lbVGcHnBGN5kQnWE4UwxQhzzSjSn6ojMpEMKaknn8saS4oYk_yw-pLzEy4iodhR9XhnxxAH23Uv9R9IwQfbdFD_BAc52_RST-MwDysk1z6m-hpSX7Z2WB20aQmDgzr6susXHTzXt3ZMoWhPqgNvuwynr_Nx9fvH94fpNZr9urqZXs6Q44JpRLCbc060ANY41sw91ZgJgoVSQpJSwuCY404JjlXjwWkhrAKqG824tYIdV1_XvosU_y4hj-YpLlN5TzaUUznhXGD5RrW2AxMGH8dkXR-yM5elDVxIpsj7lKCitJisKLSDamGAZLs4gA-lvOW6F7_hf76DL2MOfXA7L9hPsHHDty1BYUZ4Hlu7zNnc3N9tm3_IbvjSNetSzDmBN4sU-hIiQ7BZxdSsY2pKTM3_mBpdRGwtygUeWkhvH_iO6h-8-eSF</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>Ikramov, Kh. D.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20201016</creationdate><title>Rationally Verifiable Necessary Conditions for Hermitian Congruence of Complex Matrices</title><author>Ikramov, Kh. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4639-10cd44196e3bc3bdf2903610688671bc30ec3c4c86408bfec966a8e29b934aa63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Congruences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikramov, Kh. D.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikramov, Kh. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rationally Verifiable Necessary Conditions for Hermitian Congruence of Complex Matrices</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2020-10-16</date><risdate>2020</risdate><volume>249</volume><issue>2</issue><spage>189</spage><epage>194</epage><pages>189-194</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>A finite computational process using arithmetic operations only is called a rational algorithm. Matrices A and F are said to be Hermitian congruent if F = Q
∗
AQ for a nonsingular matrix Q. The paper is a survey of the necessary conditions for Hermitian congruences that are verifiable by rational algorithms. Bibliography: 7 titles.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-020-04932-9</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2020-10, Vol.249 (2), p.189-194 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_2427544607 |
source | SpringerNature Journals |
subjects | Algorithms Congruences Mathematics Mathematics and Statistics |
title | Rationally Verifiable Necessary Conditions for Hermitian Congruence of Complex Matrices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rationally%20Verifiable%20Necessary%20Conditions%20for%20Hermitian%20Congruence%20of%20Complex%20Matrices&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Ikramov,%20Kh.%20D.&rft.date=2020-10-16&rft.volume=249&rft.issue=2&rft.spage=189&rft.epage=194&rft.pages=189-194&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-020-04932-9&rft_dat=%3Cgale_proqu%3EA662609511%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427544607&rft_id=info:pmid/&rft_galeid=A662609511&rfr_iscdi=true |