Rationally Verifiable Necessary Conditions for Hermitian Congruence of Complex Matrices

A finite computational process using arithmetic operations only is called a rational algorithm. Matrices A and F are said to be Hermitian congruent if F = Q ∗ AQ for a nonsingular matrix Q. The paper is a survey of the necessary conditions for Hermitian congruences that are verifiable by rational al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2020-10, Vol.249 (2), p.189-194
1. Verfasser: Ikramov, Kh. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A finite computational process using arithmetic operations only is called a rational algorithm. Matrices A and F are said to be Hermitian congruent if F = Q ∗ AQ for a nonsingular matrix Q. The paper is a survey of the necessary conditions for Hermitian congruences that are verifiable by rational algorithms. Bibliography: 7 titles.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-020-04932-9