Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density
An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam a...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (29), p.14545-14554 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14554 |
---|---|
container_issue | 29 |
container_start_page | 14545 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 8 |
creator | Qian, Guangfu Yu, Guangtao Lu, Jiajia Luo, Lin Wang, Ting Zhang, Chenghui Ku, Ruiqi Yin, Shibin Chen, Wei Mu, Shichun |
description | An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production. |
doi_str_mv | 10.1039/d0ta04388e |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2427510136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427510136</sourcerecordid><originalsourceid>FETCH-LOGICAL-g656-651c6c12d041e8281527f2685c7166f8e7839620ac0f47c5bc7466aba581c98a3</originalsourceid><addsrcrecordid>eNo9jclqwzAYhEVpoSHNpU8g6FmtJFuLjyV0CaTJJT0HRf5tKwjZlWRC3qMPXHehc5mBb5hB6JbRe0aL6qGm2dCy0Bou0IxTQYkqK3n5n7W-RouUjnSSplRW1Qx9vvscDcmdC3hD6n6AmrTRDB0EwBCsGdLoTYYabxwOJvSDidlZDwnbfhz8BE4ud_it3_IfnjqAnHDTR9y5tvNnDE3jrIOQ8WkaijgN3uXsQotNxt7EFrAdY_wu1BCSy-cbdNUYn2Dx53O0e37aLV_JevuyWj6uSSuFJFIwKy3jNS0ZaK6Z4KrhUgurmJSNBqWLSnJqLG1KZcXBqlJKczBCM1tpU8zR3e_sEPuPEVLeH_sxhulxz0uuBKOskMUX_wBp1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427510136</pqid></control><display><type>article</type><title>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Qian, Guangfu ; Yu, Guangtao ; Lu, Jiajia ; Luo, Lin ; Wang, Ting ; Zhang, Chenghui ; Ku, Ruiqi ; Yin, Shibin ; Chen, Wei ; Mu, Shichun</creator><creatorcontrib>Qian, Guangfu ; Yu, Guangtao ; Lu, Jiajia ; Luo, Lin ; Wang, Ting ; Zhang, Chenghui ; Ku, Ruiqi ; Yin, Shibin ; Chen, Wei ; Mu, Shichun</creatorcontrib><description>An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta04388e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Attenuation ; Catalysts ; Current density ; Durability ; Electrochemistry ; Electron transfer ; Encapsulation ; Graphene ; High temperature ; Hydrogen evolution reactions ; Hydrogen production ; Metal foams ; Molybdenum oxides ; Nanoparticles ; Nanosheets ; Nickel ; Noble metals ; Oxygen evolution reactions ; Splitting ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (29), p.14545-14554</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Qian, Guangfu</creatorcontrib><creatorcontrib>Yu, Guangtao</creatorcontrib><creatorcontrib>Lu, Jiajia</creatorcontrib><creatorcontrib>Luo, Lin</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Zhang, Chenghui</creatorcontrib><creatorcontrib>Ku, Ruiqi</creatorcontrib><creatorcontrib>Yin, Shibin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><title>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production.</description><subject>Attenuation</subject><subject>Catalysts</subject><subject>Current density</subject><subject>Durability</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Encapsulation</subject><subject>Graphene</subject><subject>High temperature</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Metal foams</subject><subject>Molybdenum oxides</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Oxygen evolution reactions</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jclqwzAYhEVpoSHNpU8g6FmtJFuLjyV0CaTJJT0HRf5tKwjZlWRC3qMPXHehc5mBb5hB6JbRe0aL6qGm2dCy0Bou0IxTQYkqK3n5n7W-RouUjnSSplRW1Qx9vvscDcmdC3hD6n6AmrTRDB0EwBCsGdLoTYYabxwOJvSDidlZDwnbfhz8BE4ud_it3_IfnjqAnHDTR9y5tvNnDE3jrIOQ8WkaijgN3uXsQotNxt7EFrAdY_wu1BCSy-cbdNUYn2Dx53O0e37aLV_JevuyWj6uSSuFJFIwKy3jNS0ZaK6Z4KrhUgurmJSNBqWLSnJqLG1KZcXBqlJKczBCM1tpU8zR3e_sEPuPEVLeH_sxhulxz0uuBKOskMUX_wBp1A</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Qian, Guangfu</creator><creator>Yu, Guangtao</creator><creator>Lu, Jiajia</creator><creator>Luo, Lin</creator><creator>Wang, Ting</creator><creator>Zhang, Chenghui</creator><creator>Ku, Ruiqi</creator><creator>Yin, Shibin</creator><creator>Chen, Wei</creator><creator>Mu, Shichun</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200101</creationdate><title>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</title><author>Qian, Guangfu ; Yu, Guangtao ; Lu, Jiajia ; Luo, Lin ; Wang, Ting ; Zhang, Chenghui ; Ku, Ruiqi ; Yin, Shibin ; Chen, Wei ; Mu, Shichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g656-651c6c12d041e8281527f2685c7166f8e7839620ac0f47c5bc7466aba581c98a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attenuation</topic><topic>Catalysts</topic><topic>Current density</topic><topic>Durability</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Encapsulation</topic><topic>Graphene</topic><topic>High temperature</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Metal foams</topic><topic>Molybdenum oxides</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Oxygen evolution reactions</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Guangfu</creatorcontrib><creatorcontrib>Yu, Guangtao</creatorcontrib><creatorcontrib>Lu, Jiajia</creatorcontrib><creatorcontrib>Luo, Lin</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Zhang, Chenghui</creatorcontrib><creatorcontrib>Ku, Ruiqi</creatorcontrib><creatorcontrib>Yin, Shibin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Guangfu</au><au>Yu, Guangtao</au><au>Lu, Jiajia</au><au>Luo, Lin</au><au>Wang, Ting</au><au>Zhang, Chenghui</au><au>Ku, Ruiqi</au><au>Yin, Shibin</au><au>Chen, Wei</au><au>Mu, Shichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>29</issue><spage>14545</spage><epage>14554</epage><pages>14545-14554</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta04388e</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (29), p.14545-14554 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_2427510136 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Attenuation Catalysts Current density Durability Electrochemistry Electron transfer Encapsulation Graphene High temperature Hydrogen evolution reactions Hydrogen production Metal foams Molybdenum oxides Nanoparticles Nanosheets Nickel Noble metals Oxygen evolution reactions Splitting Water splitting |
title | Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-thin%20N-doped-graphene%20encapsulated%20Ni%20nanoparticles%20coupled%20with%20MoO2%20nanosheets%20for%20highly%20efficient%20water%20splitting%20at%20large%20current%20density&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qian,%20Guangfu&rft.date=2020-01-01&rft.volume=8&rft.issue=29&rft.spage=14545&rft.epage=14554&rft.pages=14545-14554&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta04388e&rft_dat=%3Cproquest%3E2427510136%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427510136&rft_id=info:pmid/&rfr_iscdi=true |