Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density

An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (29), p.14545-14554
Hauptverfasser: Qian, Guangfu, Yu, Guangtao, Lu, Jiajia, Luo, Lin, Wang, Ting, Zhang, Chenghui, Ku, Ruiqi, Yin, Shibin, Chen, Wei, Mu, Shichun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14554
container_issue 29
container_start_page 14545
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 8
creator Qian, Guangfu
Yu, Guangtao
Lu, Jiajia
Luo, Lin
Wang, Ting
Zhang, Chenghui
Ku, Ruiqi
Yin, Shibin
Chen, Wei
Mu, Shichun
description An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production.
doi_str_mv 10.1039/d0ta04388e
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2427510136</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427510136</sourcerecordid><originalsourceid>FETCH-LOGICAL-g656-651c6c12d041e8281527f2685c7166f8e7839620ac0f47c5bc7466aba581c98a3</originalsourceid><addsrcrecordid>eNo9jclqwzAYhEVpoSHNpU8g6FmtJFuLjyV0CaTJJT0HRf5tKwjZlWRC3qMPXHehc5mBb5hB6JbRe0aL6qGm2dCy0Bou0IxTQYkqK3n5n7W-RouUjnSSplRW1Qx9vvscDcmdC3hD6n6AmrTRDB0EwBCsGdLoTYYabxwOJvSDidlZDwnbfhz8BE4ud_it3_IfnjqAnHDTR9y5tvNnDE3jrIOQ8WkaijgN3uXsQotNxt7EFrAdY_wu1BCSy-cbdNUYn2Dx53O0e37aLV_JevuyWj6uSSuFJFIwKy3jNS0ZaK6Z4KrhUgurmJSNBqWLSnJqLG1KZcXBqlJKczBCM1tpU8zR3e_sEPuPEVLeH_sxhulxz0uuBKOskMUX_wBp1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427510136</pqid></control><display><type>article</type><title>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Qian, Guangfu ; Yu, Guangtao ; Lu, Jiajia ; Luo, Lin ; Wang, Ting ; Zhang, Chenghui ; Ku, Ruiqi ; Yin, Shibin ; Chen, Wei ; Mu, Shichun</creator><creatorcontrib>Qian, Guangfu ; Yu, Guangtao ; Lu, Jiajia ; Luo, Lin ; Wang, Ting ; Zhang, Chenghui ; Ku, Ruiqi ; Yin, Shibin ; Chen, Wei ; Mu, Shichun</creatorcontrib><description>An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d0ta04388e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Attenuation ; Catalysts ; Current density ; Durability ; Electrochemistry ; Electron transfer ; Encapsulation ; Graphene ; High temperature ; Hydrogen evolution reactions ; Hydrogen production ; Metal foams ; Molybdenum oxides ; Nanoparticles ; Nanosheets ; Nickel ; Noble metals ; Oxygen evolution reactions ; Splitting ; Water splitting</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (29), p.14545-14554</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Qian, Guangfu</creatorcontrib><creatorcontrib>Yu, Guangtao</creatorcontrib><creatorcontrib>Lu, Jiajia</creatorcontrib><creatorcontrib>Luo, Lin</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Zhang, Chenghui</creatorcontrib><creatorcontrib>Ku, Ruiqi</creatorcontrib><creatorcontrib>Yin, Shibin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><title>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production.</description><subject>Attenuation</subject><subject>Catalysts</subject><subject>Current density</subject><subject>Durability</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Encapsulation</subject><subject>Graphene</subject><subject>High temperature</subject><subject>Hydrogen evolution reactions</subject><subject>Hydrogen production</subject><subject>Metal foams</subject><subject>Molybdenum oxides</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>Oxygen evolution reactions</subject><subject>Splitting</subject><subject>Water splitting</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9jclqwzAYhEVpoSHNpU8g6FmtJFuLjyV0CaTJJT0HRf5tKwjZlWRC3qMPXHehc5mBb5hB6JbRe0aL6qGm2dCy0Bou0IxTQYkqK3n5n7W-RouUjnSSplRW1Qx9vvscDcmdC3hD6n6AmrTRDB0EwBCsGdLoTYYabxwOJvSDidlZDwnbfhz8BE4ud_it3_IfnjqAnHDTR9y5tvNnDE3jrIOQ8WkaijgN3uXsQotNxt7EFrAdY_wu1BCSy-cbdNUYn2Dx53O0e37aLV_JevuyWj6uSSuFJFIwKy3jNS0ZaK6Z4KrhUgurmJSNBqWLSnJqLG1KZcXBqlJKczBCM1tpU8zR3e_sEPuPEVLeH_sxhulxz0uuBKOskMUX_wBp1A</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Qian, Guangfu</creator><creator>Yu, Guangtao</creator><creator>Lu, Jiajia</creator><creator>Luo, Lin</creator><creator>Wang, Ting</creator><creator>Zhang, Chenghui</creator><creator>Ku, Ruiqi</creator><creator>Yin, Shibin</creator><creator>Chen, Wei</creator><creator>Mu, Shichun</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20200101</creationdate><title>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</title><author>Qian, Guangfu ; Yu, Guangtao ; Lu, Jiajia ; Luo, Lin ; Wang, Ting ; Zhang, Chenghui ; Ku, Ruiqi ; Yin, Shibin ; Chen, Wei ; Mu, Shichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g656-651c6c12d041e8281527f2685c7166f8e7839620ac0f47c5bc7466aba581c98a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Attenuation</topic><topic>Catalysts</topic><topic>Current density</topic><topic>Durability</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Encapsulation</topic><topic>Graphene</topic><topic>High temperature</topic><topic>Hydrogen evolution reactions</topic><topic>Hydrogen production</topic><topic>Metal foams</topic><topic>Molybdenum oxides</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>Oxygen evolution reactions</topic><topic>Splitting</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qian, Guangfu</creatorcontrib><creatorcontrib>Yu, Guangtao</creatorcontrib><creatorcontrib>Lu, Jiajia</creatorcontrib><creatorcontrib>Luo, Lin</creatorcontrib><creatorcontrib>Wang, Ting</creatorcontrib><creatorcontrib>Zhang, Chenghui</creatorcontrib><creatorcontrib>Ku, Ruiqi</creatorcontrib><creatorcontrib>Yin, Shibin</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Mu, Shichun</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qian, Guangfu</au><au>Yu, Guangtao</au><au>Lu, Jiajia</au><au>Luo, Lin</au><au>Wang, Ting</au><au>Zhang, Chenghui</au><au>Ku, Ruiqi</au><au>Yin, Shibin</au><au>Chen, Wei</au><au>Mu, Shichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>8</volume><issue>29</issue><spage>14545</spage><epage>14554</epage><pages>14545-14554</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>An efficient non-noble metal-based bifunctional catalyst with ultrahigh performance at large current density is imperative for industrial electrochemical water splitting. Herein, ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets self-supported on 3D nickel foam are synthesized by a hydrothermal method and post-treatment at high temperature. The experimental results and theoretical calculations confirm the electron transfer from Ni to N-doped-graphene at the interface, which can boost the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance. It displays Pt-like HER activity, can reach −10 mA cm−2 with a lower overpotential of 25 mV, and hold at −400 and −1000 mA cm−2 for 172 h without decline in performance. Meanwhile, it also exhibits good OER performance at large current density and can work for 196 h at 1000 mA cm−2 without attenuation as the cathode and anode, suggesting superior durability. This work indicates that the interface engineering of the N-doped-graphene encapsulated structure is beneficial to overall water splitting and offers a promising method for future hydrogen production.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d0ta04388e</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2020-01, Vol.8 (29), p.14545-14554
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2427510136
source Royal Society Of Chemistry Journals 2008-
subjects Attenuation
Catalysts
Current density
Durability
Electrochemistry
Electron transfer
Encapsulation
Graphene
High temperature
Hydrogen evolution reactions
Hydrogen production
Metal foams
Molybdenum oxides
Nanoparticles
Nanosheets
Nickel
Noble metals
Oxygen evolution reactions
Splitting
Water splitting
title Ultra-thin N-doped-graphene encapsulated Ni nanoparticles coupled with MoO2 nanosheets for highly efficient water splitting at large current density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T09%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-thin%20N-doped-graphene%20encapsulated%20Ni%20nanoparticles%20coupled%20with%20MoO2%20nanosheets%20for%20highly%20efficient%20water%20splitting%20at%20large%20current%20density&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Qian,%20Guangfu&rft.date=2020-01-01&rft.volume=8&rft.issue=29&rft.spage=14545&rft.epage=14554&rft.pages=14545-14554&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d0ta04388e&rft_dat=%3Cproquest%3E2427510136%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427510136&rft_id=info:pmid/&rfr_iscdi=true