Representing Kernels of Perturbations of Toeplitz Operators by Backward Shift-Invariant Subspaces

It is well known the kernel of a Toeplitz operator is nearly invariant under the backward shift S ∗ . This paper shows that kernels of finite rank perturbations of Toeplitz operators are nearly S ∗ -invariant with finite defect. This enables us to apply a recent theorem by Chalendar–Gallardo–Parting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integral equations and operator theory 2020-08, Vol.92 (4), Article 35
Hauptverfasser: Liang, Yuxia, Partington, Jonathan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is well known the kernel of a Toeplitz operator is nearly invariant under the backward shift S ∗ . This paper shows that kernels of finite rank perturbations of Toeplitz operators are nearly S ∗ -invariant with finite defect. This enables us to apply a recent theorem by Chalendar–Gallardo–Partington to represent the kernel in terms of backward shift-invariant subspaces, which we identify in several important cases.
ISSN:0378-620X
1420-8989
DOI:10.1007/s00020-020-02592-7