Representing Kernels of Perturbations of Toeplitz Operators by Backward Shift-Invariant Subspaces
It is well known the kernel of a Toeplitz operator is nearly invariant under the backward shift S ∗ . This paper shows that kernels of finite rank perturbations of Toeplitz operators are nearly S ∗ -invariant with finite defect. This enables us to apply a recent theorem by Chalendar–Gallardo–Parting...
Gespeichert in:
Veröffentlicht in: | Integral equations and operator theory 2020-08, Vol.92 (4), Article 35 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well known the kernel of a Toeplitz operator is nearly invariant under the backward shift
S
∗
. This paper shows that kernels of finite rank perturbations of Toeplitz operators are nearly
S
∗
-invariant with finite defect. This enables us to apply a recent theorem by Chalendar–Gallardo–Partington to represent the kernel in terms of backward shift-invariant subspaces, which we identify in several important cases. |
---|---|
ISSN: | 0378-620X 1420-8989 |
DOI: | 10.1007/s00020-020-02592-7 |